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Figure 1. Given audio input and an emotion label, EMOTE generates an animated 3D head that has state-of-the-art lip synchronization while
expressing the emotion. The method is trained from 2D video sequences using a novel video emotion loss and a mechanism to disentangle
emotion from speech.

Abstract

To be widely adopted, 3D facial avatars must be animated
easily, realistically, and directly from speech signals. While
the best recent methods generate 3D animations that are
synchronized with the input audio, they largely ignore the
impact of emotions on facial expressions. Realistic facial ani-
mation requires lip-sync together with the natural expression
of emotion. To that end, we propose EMOTE (Expressive
Model Optimized for Talking with Emotion), which gener-
ates 3D talking-head avatars that maintain lip-sync from
speech while enabling explicit control over the expression
of emotion. To achieve this, we supervise EMOTE with de-
coupled losses for speech (i.e., lip-sync) and emotion. These
losses are based on two key observations: (1) deformations
of the face due to speech are spatially localized around the
mouth and have high temporal frequency, whereas (2) fa-
cial expressions may deform the whole face and occur over
longer intervals. Thus we train EMOTE with a per-frame

lip-reading loss to preserve the speech-dependent content,
while supervising emotion at the sequence level. Further-
more, we employ a content-emotion exchange mechanism
in order to supervise different emotions on the same au-
dio, while maintaining the lip motion synchronized with the
speech. To employ deep perceptual losses without getting
undesirable artifacts, we devise a motion prior in the form
of a temporal VAE. Due to the absence of high-quality
aligned emotional 3D face datasets with speech, EMOTE
is trained with 3D pseudo-ground-truth extracted from an
emotional video dataset (i.e., MEAD). Extensive qualitative
and perceptual evaluations demonstrate that EMOTE pro-
duces speech-driven facial animations with better lip-sync
than state-of-the-art methods trained on the same data, while
offering additional, high-quality emotional control.
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1. Introduction
Animating 3D head avatars solely from speech has nu-

merous applications, including character animation in films
and games, virtual telepresence for AR and VR, and the
embodiment of digital personal assistants. For the best user
experience, the speech-driven animation methods must be
speaker-independent (i.e., generalize to the audio and facial
geometry of unseen subjects) and the lip articulation must
be synchronized with the speech content. Lip-sync of the
generated animation with the audio has drawn significant
attention [16, 25, 51, 62, 68]. But to be lifelike, facial ani-
mations must also express natural emotions through facial
expressions. The modeling of facial expressions in 3D has
also been well studied [24]. What is missing, however, is the
modeling and animation of emotion during speech.

The core issue is that the 3D face shapes that convey emo-
tion are often inconsistent with the lip motions needed to real-
istically match the audio. That is, there is a conflict between
expressing the emotion and synchronizing the lips with the
audio. To address this limitation, we present EMOTE (Ex-
pressive Model Optimized for Talking with Emotion), a
speech-driven 3D facial animation method with semantic
animation control over the expressed emotion. EMOTE ad-
dresses the core problem, making 3D animations that convey
the appropriate emotion without hurting lip-sync possible.

Emotional speech in the context of 3D facial animation
has been previously ignored due to the absence of suitable
datasets. While existing speech-driven animation methods
are trained on 3D scan datasets with paired audio such as
VOCASET [16], BIWI [26], or Multiface [67], no large-scale
3D scan dataset with emotional speech sequences exists. For
this reason, we train EMOTE on MEAD [66], an emotional
video dataset, which does not provide 3D supervision. To
compensate for the lack of 3D data, we generate pseudo
ground-truth (GT) 3D data using a combination of state-of-
the-art (SOTA) monocular reconstruction methods [17, 27,
28, 76] fine-tuned on MEAD.

Directly training a speech-driven animation model follow-
ing an architecture of a SOTA method such as FaceFormer
[25] on such pseudo-GT, however, results in mediocre mo-
tions, where speech-dependent and emotion-dependent lip
articulations are poorly disentangled. Furthermore, Face-
Former does not enable any control over the output emo-
tions.

We observe that facial animation is the result of two
factors that differ temporally and spatially: speech and emo-
tional state. Specifically, speech-induced articulation (or lip-
sync) has a high temporal frequency; the lip shape must
match the audio at every point in time. In contrast, emo-
tions are a longer-lasting phenomenon that change at a lower
temporal frequency compared with speech-driven articula-
tion. Additionally, speech production is localized around the
mouth region, whereas facial expressions may occur over

the entire face region. We hypothesize that these temporal
and spatial differences make it possible to disentangle these
two phenomena.

Specifically, in order to enforce the consistency of the
lip-sync, we apply a per-frame lip-reading consistency loss
similar to [28] while enforcing the desired emotion at the
sequence level through a novel transformer-based dynamic
emotion consistency loss. Finally, to separate the effect of
emotion from the effect of the spoken words, we propose a
novel emotion-content disentanglement mechanism that we
use to train our model.

Naively training a SOTA network such as FaceFormer
with the aforementioned components leads to temporally
unstable and unnatural results. To ensure that the generated
motion is natural and temporally consistent, we first train a
facial motion prior, specifically a temporal transformer-based
VAE that operates over sequences of 3DMM (FLAME [36])
parameters. We then train a regressor to map the speech
audio onto the latent space of the prior.

With this, EMOTE generates high-quality 3D facial an-
imations with accurate lip-sync while enabling the editing
of the expressed emotion. We demonstrate the ability to
edit emotions qualitatively and quantitatively in perceptual
studies.

Our contributions are summarized as: (1) The first method
for semantic emotion editing of speech-driven 3D facial an-
imation. (2) A novel supervision mechanism with percep-
tual lip-reading and dynamic emotion losses and a novel
content-emotion disentanglement mechanism. (3) A statis-
tical prior for facial motion that is designed to support ma-
nipulation of facial motion with perceptual losses while
keeping the animation natural. (4) A bidirectional non-
autoregressive architecture that is more efficient than au-
toregressive transformer-based SOTA methods. The pseudo
ground-truth 3D (FLAME parameters) for the MEAD
dataset, the trained EMOTE, and code to train and generate
speech-driven facial animations with emotion control are
available for research purposes at https://emote.is.
tue.mpg.de/

2. Related Work

The field of speech-driven 3D facial animation has a long
history [9, 15, 22, 23, 58, 69]. We focus on the most relevant
recent work, which leverages deep learning [16, 25, 32, 45,
46, 51, 57, 68, 74].

Semantic Control: Few methods provide the user with
any kind of semantic control of the generated 3D avatar.
VOCA [16] and FaceFormer [25] allow the speaking style
to be controlled by interpolating the style vectors of training
individuals; this does not enable simple editing of emotion.
While MeshTalk [51] can generate a variety of results for
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the same audio input, there is no mechanism that allows for
any control of emotion. Karras et al. [32] learn a type of
emotional latent space by jointly learning a feature vector
for each training sample in an unsupervised way. Chang-
ing this feature vector then allows test-time editing. The
learned space, however, does not inherently contain a se-
mantic meaning and this must be manually assigned after
training. Since there is no disentanglement mechanism, the
model lacks the guarantee that mixing different emotion
vectors with different audio input will produce the desired
result (i.e. correct lip-sync and desired emotion). Concurrent,
and most relevant to EMOTE is EmoTalk [44], a method
to animate emotional 3D faces from speech input. Unlike
EMOTE, EmoTalk requires artist-curated training data, and
it only provides control over the intensity of the expression of
emotion, but not over the emotion type. In contrast, EMOTE
is, to the best of our knowledge, the first to factor the ef-
fect of emotion and speech on the resulting 3D animation
via a novel emotion-content disentanglement mechanism,
allowing semantically meaningful emotion editing at test
time.

Works such as [22, 57, 74] automatically animate artist-
controllable FACS rigs but also lack explicit speech-driven
emotion control and some require additional inputs, i.e., a
transcript [22,23]. JALI for Cyberpunk [23] shows characters
with emotional faces, however, the amount of artist work,
manually designed rules, and hand-crafted features needed
to build the system is unclear.

Supervision: The recent methods are fully supervised [16,
25, 32, 51, 62, 68], requiring a training dataset of 3D scans
paired with the synchronized speech. Notably, these methods
use a mean squared error loss between the predicted and
ground truth mesh vertices (or vertex offsets from a template
mesh) at each frame. Richard et al. [51] introduce a cross-
modal loss to enforce reconstruction of audio-correlated
and uncorrelated information separately in order to learn a
categorical motion prior and an explicit eye-closure loss to
enforce eye blinks. Thambiraja et al. [62] introduce a mouth-
closure loss that is active only when bilabials are spoken,
which helps achieve proper mouth closure. EMOTE goes
further to use perceptual lip- and emotion-consistency losses
with a novel disentanglement framework.

Motion prior: Most methods do not learn or apply any
type of motion prior and let the space of valid motions
be learned by the architecture itself from the training data
[16, 25, 32, 45, 46]. MeshTalk [51], on the other hand, adopts
a two-stage approach. In the first stage, a motion prior with
a categorical latent space is trained. This pretrained prior is
then used in the second stage to autoregressively generate
the results. CodeTalker [68] adopts an approach similar to
FaceFormer [25] and augments it with a separately trained

VQ-VAE motion prior. Chandran et al. [10] introduce a
transformer-based autoencoder for facial motion animation
with disentangled identity and shape. The authors demon-
strate its effectiveness for tasks like motion compression,
retargetting, unconditional generation and others. However,
its suitability for regression tasks like speech-driven anima-
tion is not investigated.

2D talking head generation: There is a long line of work
focused on generating 2D videos of talking heads given
speech [3, 11–13, 18, 21, 31, 33, 37, 48, 56, 64, 65, 72] and
today there are even commercial systems for this task. These
approaches, however, typically ignore emotion and focus
on lip-sync. The few methods that address facial-expression
animation operate over 2D videos [31, 43, 63, 64]. While
some of these methods use 3D parametric models to guide
the output expressions (e.g., [43]), their focus is not on out-
putting the 3D shape and, hence, the underlying 3D shapes
are of low quality.

3D Datasets: The ideal dataset for our task would con-
tain ground-truth (GT) 3D face scans synchronized with
audio. Such data is limited due to the expense and complex-
ity involved in capturing it. BIWI [26], VOCASET [16],
S3DFM [73], and Multiface [67] are publicly available
datasets for the audio-driven 3D talking-head task. These
datasets are limited in size, richness of emotion, speaking
styles, and shapes of the subjects.

2D Datasets: In contrast to the limited richness of 3D
datasets, 2D video is plentiful. Specifically, there are many
available video-speech datasets [1, 2, 14, 41, 52, 66, 75], and
video datasets focused speech emotion recognition (SER)
[5,7,38,47,71]. See the Sup. Mat. for an overview of existing
2D and 3D datasets. Of the existing video datasets, MEAD
[66] is most suitable for our task. It is of sufficient size, it is
captured in the lab, which makes it easier to perform 3D face
reconstruction than in-the-wild video, and, most importantly,
it exhibits high emotional variety.

Off-the-shelf 3D face-reconstruction methods can be ap-
plied to the video frames, providing pseudo-GT data. This,
however, comes with many drawbacks. While the field of
image-based 3D face reconstruction has made tremendous
progress [17,19,27–29,54,55,59–61,70,76,77], SOTA meth-
ods are often not robust to occlusion, they produce inaccurate
shape or expression, or are not temporally stable. Despite
these limitations, the large amount of data available from
video outweighs the downsides. Consequently, we gener-
ate pseudo-GT data from video by integrating recent SOTA
methods [17, 28, 76].
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Figure 2. FLINT motion prior architecture. Given a sequence of T FLAME parameters, the encoder maps this sequence to a sequence of
compact latents. The decoder then reconstructs this latent sequence back into a sequence of T FLAME parameters. The reparametrization
trick is employed to sample the latents from predicted sequences of means and sigmas.

3. Background and Notation
Face model: EMOTE predicts the expression and jaw pose
parameters of FLAME [36], a parametric 3D head model.
FLAME is defined as a function M(β,θ,ψ) → (V,F)
that takes parameters for identity shape β ∈ R|β|, facial
expression ψ ∈ R|ψ|, and pose θ ∈ R3k+3, with k = 4
joints, and outputs a 3D mesh with vertices V ∈ Rnv×3 and
triangles F ∈ Rnf×3.

Emotion feature extraction: We use EMOCA’s [17] pub-
licly available emotion recognition network to predict emo-
tion features from an image. This model consists of a ResNet-
50 [30] network trained on AffectNet [40] on the task of in-
the-wild emotion recognition to regress valence and arousal
and classify the eight basic expressions (neutral, happiness,
sadness, surprise, fear, disgust, anger, and contempt). After
training the network, the prediction head is discarded, and
the output of the final ResNet layer is used as an emotion
feature vector, ϵ ∈ R|ϵ| . In the following, we denote the
network with Eim

emo(I) → ϵ.

Video emotion feature extraction: Emotions are phenom-
ena that generally last at least several seconds or more. Sin-
gle -frame emotion features are insufficient to describe them,
because an expression in a single frame carries the effect of
both emotion and speech. This can lead to misinterpreting
speech-induced articulation for emotional cues (see Fig. 3 in
Sup. Mat.). Hence, emotion features should aggregate infor-
mation across time. To address this, we train a lightweight
transformer-based emotion classifier that takes a sequence of
emotion features ϵ1:T ∈ RT×|ϵ| and outputs a video emotion
classification vector e ∈ R8 and the video emotion feature
ϕ ∈ R|ϕ|, which is the sequence-aggregated feature pro-

duced by the last transformer layer before the classification
head, with |ϕ| = 256. We refer to the video motion feature
extraction as Evid

emo(ϵ
1:T ) → (e,ϕ). More details about the

video emotion extraction can be found in Sup. Mat.

Speech feature extraction: To encode the audio signal, we
employ a pretrained ASR network, Wav2Vec 2.0 [4]. It takes
as input the raw waveform sampled at 16kHz. This waveform
is first passed through temporal convolutional layers produc-
ing a feature sampled at 50Hz. Similar to Fan et al. [25], we
use linear interpolation to downsample the feature down to
25Hz to match the frame-rate of our input videos. The resam-
pled feature is then fed into the transformer-based part of
Wav2Vec 2.0, producing the output speech feature. Formally,
it is defined as A(w) → s1:T , where A is the Wav2Vec 2.0
network, w is the raw waveform, and s1:T ∈ RT×ds is the fi-
nal speech feature resampled to 25Hz. T denotes the number
of frames and each frame is of dimension ds = 768.

4. Method
Motivation: EMOTE follows a two-step pipeline, which
first trains a temporal variational autoencoder, and then uses
its latent space as a motion prior. Specifically, we train a
regressor that maps the speech audio to the latent space of
the motion prior conditioned on a given target emotion, its
intensity (mild, medium, or high), and a subject-specific
speaking style.

4.1. Facial Motion Prior: FLINT

Facial motion is complex and modeling it is challenging.
To simplify the problem we represent it in a learned low-
dimensional representation. As a foundation, we represent
the face in each of the T frames of a sequence using FLAME,
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giving |ψ| + |θjaw| = 53 dimensions (i.e., 50 expression
parameters and 3 jaw pose parameters) per frame. Facial
motions, however, are not independent between frames and,
hence, a sequence can be represented in a lower-dimensional
space. To that end, we train a temporal variational autoen-
coder called FLINT (FLAME IN Time) to represent facial
motion sequences. The formulation exploits a transformer
encoder to extend the VAE framework to our temporal mod-
eling problem (cf. [42]). We exploit this as a prior in training
EMOTE and find that it reduces high-frequency jitter and
unnatural jaw rotations.

Architecture: The encoder compresses the sequence of T
frames (ψ1:T ,θ1:Tjaw) into T/q latent frames z1:T/q, where
q is the number of consecutive original frames that a single
latent frame encapsulates (similar to [42]). The intervals of
consecutive latents do not overlap. We empirically set q = 8.
Specifically,

ENC(ψ1:T ,θ1:Tjaw) → (µ1:T/q,σ1:T/q). (1)

Using the VAE reparametrization gives us the final latent
sequence: zt = σt ∗ zts + µt, where zt is one latent frame
and zts is sampled from N (0, I). This is done separately for
each latent frame t ∈ {1, ..., T/q}, before they are stacked to
compose the final sequence of latents, z1:T/q . The sequence
z1:T/q is then decoded back to the original space:

DEC(z1:T/q) → (ψ̂
1:T

, θ̂
1:T

jaw), (2)

The architecture of our autoencoder is outlined in Fig. 2, and
the hyperparameters are in Sup. Mat.

Losses: We train FLINT with the following loss functions:

Ltotal = λrecLrec + λKLLKL. (3)

Reconstruction loss: For each frame t, we compute the
mean squared error between the pseudo-GT and predicted
meshes:

Lrec = MSE(V̂1:T ,V1:T ), (4)

where the vertex coordinates Vt, V̂t are produced by feed-
ing the GT and reconstructed parameters through FLAME:
Vt = M(β,ψt,θtjaw).

KL divergence: For each latent frame in the sequence, we
compute the standard VAE KL divergence term [35].

LKL = 0.5

[
−
∑
i

(log σ2
i + 1) +

∑
i

σ2
i +

∑
i

µ2
i

]
. (5)

Please note that the individual latent means and sigmas are
not treated here as a sequence but separately.

4.2. Emotional Speech-Driven Animation: EMOTE

Architecture: EMOTE is an encoder-decoder architecture
summarized in Fig. 3. The encoder uses Wav2Vec 2.0 [4]
to extract the audio feature sequence: A(w) = s1:T . Each
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extracted audio feature st is concatenated with a style vec-
tor: s1:Ts =

[
S(c)1:T |s1:T

]
, with S(c) denoting the styling

function, which is a linear projection of the input condition c.
At training time, c is the ground-truth emotion type, emotion
intensity, and speaker ID:

c = [cemo|cint|cid] , (6)

where cemo, cint, cid are one-hot vectors of emotion, inten-
sity and identity indices. At test time, c can be set man-
ually, which provides animator control over the emotion
of the output sequence. After the style is incorporated, the
speech feature is mapped to the latent space of the mo-
tion prior. Specifically, it is temporally downsampled by
concatenating q consecutive frames together and then pro-
jecting it with a linear layer down to a single latent frame:
SQUASH(s1:Ts ) = z1:T/q. Finally, the obtained latent se-
quence z1:T/q is fed to the pretrained, frozen, motion de-
coder to produce the output FLAME parameters using Eq. 2,

obtaining the estimates of ψ̂
1:T

, θ̂
1:T

jaw.
During training, both the GT and predicted geometry are

rendered with a differentiable renderer [50], and the images
are passed to a lip-reading network Elip and video emotion
network Evid

emo. We denote the forward pass, including the
differentiable rendering, and the extraction of emotion and
lip-reading features as:

EMOTE(s1:T , c) → (V̂1:T , η̂1:T , ϕ̂), (7)

where V̂1:T is the generated vertex sequence, η̂1:T is the
sequence of lip-reading features, and ϕ̂ is the video emotion
feature.

Note that unlike recent transformer-based SOTA methods,
EMOTE is not autoregressive. Hence, the decoder is only
called once, making the decoding computational complexity
O(1). This is more efficient than the O(T ) autoregressive
decoding loop of FaceFormer and CodeTalker. It also allows
us to consider future context by employing bidirectional
decoding similar to BERT [20].

Training: During training, we supervise the model using
the following loss functions:

Ltotal = Lrec + Lemo + Llip + Ldis
emo + Ldis

lip . (8)

Reconstruction loss: For each frame t in the sequence we
compute the mean squared error between the pseudo-GT and
predicted meshes:

Lrec = MSE(V̂1:T ,V1:T ). (9)

Video emotion loss: We extract the video emotion feature
from the original video Evid

emo(E
im
emo(I

1:T )) = ϕ and from the

Input audio i

Input emotion i

EMOTE

Lip reading 
disentanglement Input audio i

Input emotion j

Input emotion i

Input audio j

Emotion 
disentanglement

Lip reading 
disentanglementInput emotion j

Input audio j

EMOTE EMOTE

EMOTE

Figure 4. Disentanglement mechanism. During training, we dupli-
cate batches and exchange the emotion condition in the duplicated
batch (right), the augmented batch is also passed through the model,
and we compute the disentanglement losses such that the result of
the augmented batch keeps the original articulation but takes on the
desired emotion.

differentiably-rendered predicted sequence and call this ϕ̂.
Their emotional content should be the same, so we penalize
their distance:

Lemo = de(ϕ̂,ϕ), (10)

where de is the negative cosine similarity.

Lip-reading loss: For each frame t in the sequence, we
also compute a perceptual lip-reading loss. We crop out
the mouth region and feed it to the lip-reading network.
We extract per-frame lip-reading features using Elip and
calculate the distance between the pseudo-GT lip-reading
features and the predicted lip-reading features:

Llip = dl(η̂
1:T ,η1:T ), (11)

where dl is the negative cosine similarity.

Disentangling emotion and content: Our goal is to dis-
entangle content and emotion such that we can control one
while retaining the other. The conditioning described in Eq. 6
is not sufficient to achieve this. Hence, we devise a novel
emotion-content disentanglement mechanism, outlined in
Fig. 4. During training, we take two sequences with dif-
ferent emotions and switch their emotion conditions. The
lip-reading loss for each decoded result should match the
original despite the change in emotion, but the emotion in the
decoded result should change to match the new condition.

More formally, let EMOTE(s1:Ti , ci) = (V̂1:T
i , η̂1:T

i , ϕ̂i)
be a forward pass of EMOTE for sample i and simi-
larly for a distinct index j, EMOTE(s1:Tj , cj). We also
generate sequences with swapped emotion conditions,
i.e., EMOTE(s1:Ti , cj↔i) = (V̂1:T

j↔i, η̂
1:T
j↔i, ϕ̂j↔i) and

EMOTE(s1:Tj , ci↔j) = (V̂1:T
i↔j , η̂

1:T
i↔j , ϕ̂i↔j), with i↔ j

denoting generations using audio j with the emotion and
intensity condition of audio i.
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Disentanglement losses: We apply both emotion and lip-
reading perceptual losses to the augmented samples:

Ldis
emo = de(ϕ̂i↔j ,ϕi) Ldis

lip = dl(η̂
1:T
i↔j ,η

1:T
j ). (12)

Since we treat emotion as a sequence phenomenon, rather
than a per-frame phenomenon, we can bypass the require-
ment for temporal alignment between emotion features of
ϕi↔j and ϕi.

5. Implementation Details
Data: FLINT and EMOTE are trained on the MEAD
dataset [66]. MEAD is an emotional video dataset of 48
subjects, each uttering around 30 short English sentences.
Each subject utters all sentences several times, once for neu-
tral and three times for seven basic emotions (i.e., anger,
disgust, fear, happiness, contempt, sadness, and surprise),
where each of the basic emotions is articulated with three
intensity levels. The subjects are actresses and actors fluent
in English. We use 39 subjects and split the dataset such
that 32 subjects are included in the training set and 7 in the
validation set; i.e., training and validation sets use different
subjects.

For evaluation, we use audio sequences from LRS3 [2],
a large scale dataset of English TED and TEDx talks by
a large variety of speakers. We use the LRS3 test set in
our evaluations, which is disjoint from the speakers in our
training set.

Data processing: Since MEAD does not come with 3D
meshes, we recover the 3D faces synchronized with the
audio directly from the videos. However, we found that
existing monocular 3D face reconstruction methods (e.g.,
[17, 27, 28]) are insufficient to process the data. Specifically,
EMOCA [17] best recovers emotional 3D faces, but it is
often over-expressive and does not well match the lip articu-
lation. SPECTRE [28] improves the lip articulation but lacks
expressiveness of the emotion. Both methods use DECA [27]
to recover shape, but this is less accurate than MICA [76].
To get the best of these methods, we augment EMOCA with
SPECTRE’s lip-reading loss, replace its predicted identity
face shape with MICA’s prediction, and use Mediapipe [39]
keypoints instead of FAN [6] keypoints as supervision. We
then finetune the image encoders of this combined model on
MEAD by minimizing EMOCA’s losses with an additional
keypoint loss, and the added lip articulation loss. Once fine-
tuned, running inference of the refined model on MEAD
gives the reference 3D face shapes. More details can be
found in Sup. Mat.

Motion prior: FLINT is trained on the MEAD dataset for
500 epochs with batch size 4 and sequence lengths of 32
frames. Adam [34] is used as optimizer, with a learning rate

of 1e-4. The size of the latent space is set empirically to 128
and q = 8, and the KL divergence term is weighted with a
factor of 1e-3.

Speech-driven animation model: We train EMOTE in
two stages. In the first stage, we only supervise with the
vertex loss without the disentanglement mechanism. This
is computationally efficient since it does not require differ-
entiable rendering. We train the model for 20 epochs with
batch size 4 and sequence lengths of 64 frames with the
Adam optimizer and a learning rate of 1e-4. The first stage
is only supervised using the MSE of vertex differences with
weight: λrec = 1. In the second stage, we freeze the wav2vec
weights, add the differentiable rendering, enable the percep-
tual losses and the disentanglement mechanism, and fine-
tune for two more epochs. The perceptual loss weights are:
λemo = λdis

emo = 2.5e− 6 and λlip = λdis
lip = 2.5e− 5.

6. Experiments
Evaluation must consider two components: the sync be-

tween the lip articulation and the input speech and the quality
of the emotional content. As both tasks are difficult to evalu-
ate automatically, we conduct two perceptual experiments
and provide qualitative evaluations to demonstrate the quality
and effectiveness of EMOTE.

6.1. Perceptual Studies

We conduct two perceptual studies on Amazon Mechani-
cal Turk. First, we compare EMOTE’s lip-sync quality with
that of publicly available SOTA methods. Second, individ-
ual model components are ablated in order to evaluate the
influence of each component on the perceived quality of the
results.

Lip articulation evaluation: This study compares
EMOTE with CodeTalker [68], FaceFormer [25], MeshTalk
[51], and VOCA [16]. We randomly selected 15 input audio
sequences from the LRS3 test set and used these to synthe-
size the facial motion. For results generated with EMOTE,
the input emotion condition was set to neutral. In the study,
we showed the participants two audible output videos of two
different methods side by side (the left-right order was ran-
domized for every hit). The participants played both videos
separately. After playing both videos at least once, the par-
ticipant was allowed to select the result with better lip-sync
on a 5-point Likert scale (strong/weak preference for one
or the other model, or equally good). Each of the two-way
comparison studies was completed by 15 participants. Three
catch trials with obvious answers (videos with animation
generated by a different audio than the one playing) were
added, and participants that preferred the catch trials were
excluded (see figures for details).
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The Likert plot in Fig. 8 shows preferences averaged
across participants. Note that all SOTA methods were trained
on high quality audio-4D scan datasets ( [16, 67]), while
EMOTE is trained on pseudo-GT (i.e., MEAD). EMOTE’s
lip-sync is preferred over scan-trained MeshTalk despite be-
ing trained on pseudo-GT. Note that the lip-sync of methods
trained on VOCASET (VOCA, FaceFormer, CodeTalker) is
preferred due to the superior training data quality of VO-
CASET’s 3D scans. Importantly, in a fair comparison,
EMOTE outperforms FaceFormer retrained on MEAD, sug-
gesting the value of our architecture and method.

Ablation experiments: This study evaluates the impor-
tance of the individual building blocks of EMOTE. We com-
pare: (1) EMOTE, (2) EMOTE w/o the disentanglement
terms, (3) EMOTE w/o disentanglement and emotion loss,
(4) EMOTE w/o disentanglement and lip-reading loss, (5)
EMOTE w/o FLINT, (6) EMOTE w/o disentanglement and
perceptual losses, (7) EMOTE w/ static emotion loss com-
puted per-frame instead of the dynamic emotion loss, (8)
FaceFormer-EMO, which is the FaceFormer architecture
augmented with a one-hot input for the emotion condition
and intensity.

For this study, we randomly select 14 input audios from
the LRS3 test set and use these to synthesize the facial mo-
tion. We ensure that each of the 7 basic emotions (anger,
disgust, fear, happiness, contempt, sadness and surprise) is
equally represented. Similar to the study above, we present
the participants with two videos. First the videos are muted,
and the participant is asked which of the two videos better
communicates a particular specified emotion. Then, the same
videos are presented but this time with audio and the par-
ticipant is asked which of the two has better lip-sync (same
question as in the study above). Participants answer both
questions on a 5-point Likert scale. This process repeats for
all 14 video pairs. Each of the two-way comparisons was
completed by 15 participants. As above, three catch trials
for both emotion and lip-reading were used to automatically
filter out uncooperative participants. Figure 7 reports the
results of this study for both emotion and lip-sync. The study
demonstrates that all design choices are critical. Perhaps
the only surprising result is the similar performance of an
EMOTE variant that uses a static per-frame emotion loss
instead of the dynamic one. For more details, see the visual
ablation study.

6.2. Qualitative Results

Comparison with SOTA: In Fig. 5, we qualitatively com-
pare EMOTE with the SOTA methods. While all methods
produce good lip articulation in accordance with the spoken
words, none of these methods is able to produce emotional
animations. FaceFormer trained on our MEAD training
data can produce emotional faces, however, speech-content

EMOTE
(MEAD)

CodeTalker
(VOCASET)

MeshTalk
(MT Dataset)

FaceFormer 
(MEAD)

VOCA
(VOCASET)

FaceFormer
(VOCASET)

Utterance: sPecifically NOne staTIstics noW HAve fEEl

Figure 5. Visual comparison to SOTA. The rows show specific
frames from a “neutral” sequence generated by EMOTE and base-
line models in order: FaceFormer (trained on MEAD pseudo-GT),
FaceFormer, CodeTalker, VOCA, and MeshTalk. The training
dataset of each method is indicated in the brackets. The input char-
acters of the utterances that were used to generate the animations
are highlighted in red (top text description). Our model generates
accurate animations of the lips (highlighted in green). FaceFormer
trained on the pseudo-GT MEAD data, without emotion condi-
tion, struggles to produce a consistent “neutral” emotion given the
neutral input speech (highlighted orange). Baseline models, while
giving mostly good results, can sometimes also exhibit inferior
lip-sync (highlighted in red).

and emotions are not well disentangled, and method lacks
emotional control. This highlights the importance of our
emotion-content disentanglement mechanism.

Ablation experiment: Figure 6 visualizes the effect of
the individual design components. EMOTE (top row) pro-
duces accurate mouth shapes for various words and emotions.
EMOTE w/o disentanglement terms (second row) starts to
lose accurate lip-sync (for instance mouth closures on bilabi-
als), especially during higher intensity emotions. EMOTE
w/o the video emotion loss (third row) starts to lose some
of the emotional cues as the only supervision signal that
remains for emotion is through the geometry loss. EMOTE
w/o the lip-reading loss (fourth row) suffers from inaccurate
lip-sync. EMOTE w/o FLINT is temporally unstable and pro-
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duces undesirable artifacts. EMOTE w/o any perceptual loss
terms suffers from lack of emotional expressivity. EMOTE
with a static emotion loss instead of the dynamic one has
results that are comparable to EMOTE but sometimes suf-
fers from undesirable artifacts such as eye closure. Finally,
FaceFormer-EMO, a variant of the FaceFormer architecture
augmented with emotion conditioning of Eq. 6, lacks both
expressiveness and accurate lip-sync.

6.3. Emotion editing

EMOTE provides animators with emotion control. Fig-
ure 9 demonstrates this effect by editing emotions over the
course of a sequence.

6.4. Limitations

High frequency speech: We have demonstrated that
EMOTE produces emotional performances while maintain-
ing lip-sync superior to the SOTA trained on the same
pseudo-GT data. However, the model is not perfect, as it
can fail with very fast high-frequency speech. This is due to
our data collection process. While our pseudo-ground truth
has good shapes that capture emotion, it is only sampled at
25fps. Using 3D scan data, with a higher sampling rate, or
elaborate data augmentation, could produce more accurate
results.

Eye blinks: EMOTE does not model eye blinks since those
are only weakly correlated with speech and emotion and
are hence difficult to capture with a deterministic method
like EMOTE. Incorporating findings from [53] may help
alleviate this limitation.

Paralinguistics: EMOTE does not model paralinguistic
motion such as raising eyebrows on words that require em-
phasis since the lip-reading loss affects only the mouth. Solv-
ing this may entail incorporating language semantics (i.e.,
language models), a richer training set and non-deterministic
prediction modelling.

Emotion granularity: EMOTE is capable of generating
8 basic emotions in various speaking styles corresponding
to the number of training individuals. However, realistic
emotion-induced motion can take on many more emotions
and many more styles. Incorporating this would require train-
ing on large-scale datasets of sufficient richness and a more
granular emotion model.

Mouth cavity: EMOTE and existing SOTA methods focus
on the face shape and ignore the teeth and tongue, which can
be important in speech perception.

Automatic emotion control: While EMOTE is capable
of producing emotional faces, the emotion label must be
provided by the user. This process could be automated by
using automatic speech emotion recognition to provide the
emotion condition.

7. Conclusions
We have presented EMOTE, the first framework to gen-

erate 3D talking head avatars with explicit control over the
type and intensity of emotional expression. Unlike current
SOTA methods that require high-quality scan datasets for
training, EMOTE is trained from an emotional video dataset.
Despite training on data without high-quality 3D ground
truth, EMOTE’s lip-sync is of high quality, and better than
that of SOTA methods trained on the same data. This is
enabled by (co-)supervising the training with perceptual
losses, i.e., a video emotion loss and a lip-reading loss, which
give EMOTE an edge compared to the SOTA methods that
are supervised solely with pseudo-GT geometry. Without
high-quality 3D data, a geometric loss alone is insufficient.
EMOTE’s loss terms ensure that the results carry emotional
content as well as accurate lip articulation that is in accor-
dance with the speech signal. A novel content-emotion ex-
change mechanism ensures that the lip articulation is driven
by the spoken word and the expression is controlled solely
by the specified emotion condition, effectively disentangling
the two naturally entangled phenomena. To utilize the power
of the perceptual losses without artifacts, we devise a tem-
poral transformer-based VAE coined FLINT that operates
on FLAME parameter sequences. We then use its decoder
as our motion prior by mapping the speech features and the
emotion condition into its latent space. Unlike the SOTA
methods, EMOTE regresses FLAME expression and jaw
pose, enabling more direct control over face shape by vary-
ing FLAME’s identity shape parameters. EMOTE makes
use of a computationally efficient feedforward architecture.
We believe that EMOTE opens an important and largely
overlooked problem in the speech-driven animation field,
i.e., that of emotional animation generation, and makes a
considerable advance in that direction.
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EMOTE

EMOTE w/o 
disentanglement

EMOTE w/o video 
emotion loss

EMOTE w/o 
lip-reading loss

EMOTE w/o FLINT

EMOTE w/o 
perceptual losses

EMOTE w/ static
emotion loss

FaceFormer-EMO

wE hAve Manufacture goOds waS noW hAve nOw

Happy Sad Disgust Anger Surprise Neutral Contempt SadEmotion:

Utterance:

Figure 6. Visual ablation study. The rows show generations of the specified model for several spoken words highlighted above. Here we
include different visemes and emotions taken out of context (not in sequence). Our model exhibits high emotional fidelity (highlighted
green) and accurate lip motions (yellow). The effects of emotion are also visible in the lower part of the face (light green). Models without
emotional supervision suffer from poor emotional fidelity (highlighted blue). Models without explicit lip-reading supervision often suffer
from inferior lip-sync (such as incomplete mouth closure on bilabials). Finally, the model without FLINT yields uncanny artifacts (purple).
Please watch the supplementary video to see the results in motion.
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Figure 7. Ablation perceptual study results for emotion quality (top) and lip-sync quality (bottom). While participants prefer EMOTE w/o
disentanglement on the emotion task its inferior articulation hurts the lip-sync preferences (see Fig. 6 and Sup. Video). EMOTE /w static
emotion loss performs comparably on both metrics but occasionally results in artifacts (see Fig. 6 and Sup. Video). EMOTE is preferred on
both tasks to all other ablated models.
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Figure 8. The results of the perceptual study comparing lip-sync of our method with the SOTA. The training dataset of each model is
indicated in the brackets. The participants prefer EMOTE over MeshTalk. VOCA, FaceFormer and CodeTalker, which are trained on
VOCASET, are preferred over EMOTE thanks to the superiority of the scanned training data. However, when we train FaceFormer on
MEAD, its lip-sync preference is considerably lower, highlighting the benefits of our approach over SOTA methods on inferior data.
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A. Additional Technical Details

A.1. Motion Prior: FLINT

Here we provide additional details about FLINT. Both trans-
formers (in encoder and decoder) use a modified version of AL-
iBi [49], that allows the transformer to look into the future steps
(as opposed to the past steps only, which is what the origina ALiBi
does). The ALiBi mechanism is preferred over additive positional
encodings since it generalizes to arbitrary sequence lengths bet-
ter [49]. Both convolutional blocks in encoder/decoder have three
convolutional layers that temporally downsample/upsample the
sequence. The bottleneck dimension is empirically set to 128. In
training, λrec is set to 1000000 and λKL to 0.001, which makes the
converged KL divergence term less than one order of magnitude
lower than the reconstruction terms. The model code and weights
will be made publicly available.

A.2. Face Reconstruction Network

In this part we describe our face reconstruction network used
to generate pseudo-GT for MEAD. In order to obtain the highest
quality possible, we employ a combination of four SOTA in-the-
wild face reconstruction methods, each of which tackles a particular
aspect of the problem. Specifically, we augment DECA [27] with
MICA [76], the SOTA on face shape prediction. Next, we utilize the
expression prediction of EMOCA [17] to get the SOTA quality of
facial expressions and emotions. Finally, in training we incorporate
the lip-reading loss term from SPECTRE [28] in order to produce
the SOTA-level of lip articulation.

Architecture: The architecture is depicted in Fig. 10. The input
image is passed through all three encoders (MICA, DECA and
EMOCA). MICA’s encoder is used to output the facial shape vector
β. DECA’s encoder predicts the rest of the parameters: camera c,
spherical harmonics coefficients for lighting l, albedo coefficients
α, global head pose and jaw pose θ. EMOCA’s encoder predicts
the facial expression coefficients ψ. With the regressed predictions,
we can now reconstruct the geometry and render an image which
can be used for supervision.

Training: We finetune the individual components of the afore-
mention architecture in stages.

(1) Finetuning DECA: In the first stage, the DECA [27] coarse
encoder (beige) is finetuned from the original released DECA
model on VGGFace2 [8], the same dataset as the authors. The
difference from the original implementation is that we take MICA’s
prediction for the facial shape vector β. The encoder of MICA
remains frozen. DECA’s encoder predicts the rest of the parameters:
c, l, α, θ and also the expression coefficients ψ.

(2) Training EMOCA: In the second stage, we train the
EMOCA expression encoder similarly to Danecek et al. [17], dis-
carding DECA’s expression predictions. However, there are a few
differences. Instead of employing FAN [6] landmarks, we make use
of Mediapipe [39] landmarks. We only use the landmarks and not
the face contour since the face contour does not affect the expres-
sion. Compared to FAN landmarks, the eye and mouth landmarks
of Mediapipe are more accurate. In addition to the photometric
and emotion consistency loss from the EMOCA authors, we also
employ the lip-reading loss from SPECTRE. This stage is akin to
the EMOCA v2 the authors released but upgraded with MICA for
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Figure 11. Static Emotion Recognition. In the figure you can see the input images taken out of one of the videos of a sad person from the
MEAD dataset (left-hand side) and the outputs of a static emotion recognition system - the basic expression classification (middle) and
valence and arousal (right-hand side) over the course of a video, with x-axis representing the temporal dimensions and y-axis the probability
of the emotion class (middle) and valence, arousal (right). The person has a constant level of sadness throughout the video. Despite that, the
static emotion recognition yields very different classification for individual frames (fear, sadness, surprise, contempt and neutral).

shape prediction.
(3) Finetuning on MEAD: In the final stage, we finetune

EMOCA with the same losses as in the previous stage on MEAD
in order to get the most accurate MEAD pseudo-GT possible.

A.3. Limitations of Static Emotion Recognition
Static (single-image) emotion recognition is not stable. It can

output many different classification results over the course of a
video of a person talking under a single emotion as shown in Fig. 11.
Even to a human, single frames can be misleading because temporal
context is missing and speech-induced facial expressions can lead
to misinterpretation. Static emotion recognition suffers from the
same limitation. This limitation can be lifted, when considering
emotions as a temporal phenomenon. For this reason, we opt to
train a video emotion recognition network that is able to leverage
contextual information. And then utilize the sequence aggregated
features for our video emotion perceptual loss.

A.4. Video Emotion Recognition
Our implementation of the video emotion networks is a

lightweight single-layer transformer network with two classification
prediction heads - one to classify the emotion and one to classify
the intensity. It takes a sequence of static emotion recognition fea-
tures extracted from a video on the input ϵ1:T , passes it through
a transformer encoder to get the video emotion feature ϕ. The
video features is then used to classify the emotion class and intesity
with linear classification prediction heads. We train this network on
the MEAD dataset with the standard cross-entropy classification
losses for both classification tasks (emotion and intensity) until
convergence. Ground truth labels for both emotion and intensity
are provided with the MEAD dataset. The architecture is depicted
in Fig. 12. The model code and weights will be made publicly

available.

A.5. Dynamic vs Static Emotion Loss
Fig. 13 compares the performance of the static and dynamic

emotion losses. The video emotion classification is significantly
superior to the static emotion classifier.

B. Datasets
Existing datasets: Table 1 provides an overview of existing
3D and 2D face datasets with synchronized audio. While there is
seemingly many datasets available, each of them come with a par-
ticular set of challenges (such as low video quality, too difficult for
face reconstruction, not enough variety of emotions and speaking
styles, small size of the dataset etc.). Taking all of the above into
account, we opt for using MEAD [66] in our experiments, since it

Table 1. Datasets

Datasets Modality Number of subjects Expressions Duration

BIWI 3D 14 (8F, 6M) 11 1.43 h
VOCASET 3D 12 (6F, 6M) – 0.48 h
S3DFM 3D 77 (27F, 50M) – 0.28 h
Multiface 3D 13 65 (v1), 118 (v2) –
VoxCeleb1 2D 1251 (561F, 690M) – 352 h
VoxCeleb2 2D 6112 (2351F, 3761M) – 2442 h
Faceforensics++ 2D – – –
CelebV-HQ 2D 15653 83 68 h
LRS2-BBC 2D – – 224.5 h
LRS3-TED 2D 5594 – 438 h
RAVDESS 2D 24 (12F, 12M) 8 –
CREMA-D 2D 91 (43F, 48M) 6 –
MELD 2D 407 7 (+ 3 sentiments) 12.96 h
CMU-MOSI 2D 98 sentiment intensity [-3,3] 2.6 h
CMU-MOSEI 2D 1000 6 (+ 5 sentiments) 65.88 h
TalkingHead-1KH 2D – – 1000 h
MEAD 2D 60 (30F, 30M) 8 38.95 h
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Figure 13. Classification performance of static vs dynamic emotion loss. Here we show two confusion matrices on the MEAD validation
set, the one of static emotion recognition network (left) and a dynamic emotion recognition network (right). For static emotion classification
results we took the most occurring classification in each video. The accuracy of static emotion recognition network is 57.9 % and the
dynamic is 90.8%.

is of sufficient scale, has all emotions in different intensities and
thanks to its constrained environment and high quality video, it
is relatively easy to reconstruct. It is also considerably easier to
reconstruct compared to the other datasets since it is a captured
in a lab and hence does not come with the problems of associ-
ated with reconstruction in-the-wild (such as occlusions, difficult
illumination etc.).

C. Perceptual studies

Here we provide additional detail about our perceptual studies.

Lip articulation evaluation: Fig. 14 show the exact layout
used for this perceptual study.
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Figure 14. Lip-sync Comparison with SOTA. The participants are presented with two videos with audio, one generated using EMOTE and
others using SOTA methods. The participant is asked to judge the quality of synchronization of the lips with the speech in the video.

Ablation perceptual study: Figures 16 and 15 show the web
layout of the emotion quality and lip-sync quality ablation studies
respectively. The two layouts alternate after each response.

D. Additional Results
Fig. 17 and Fig. 18 demonstrates the ability of EMOTE to

generate emotional animation. A different speaking style was used
for each of the two figures.
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Figure 15. User study: Lip-sync Analysis. The participants are presented with same two videos as in Fig. 16. This time the videos are
audible and the user is asked to judge the quality of the articulation, taking the audio into account. Again, the participant must watch both
videos in full length before being able to proceed to the next question. Upon answering, the user is redirected to the first question (emotion
quality assessment) with a new pair of videos.
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Figure 16. Emotion quality assessment. The participants are presented with two muted videos and are asked to select which of the two
videos better communicates the emotion specified in the text under the video. The participant must watch both videos in full length at least
once before submitting an answer becomes available and then they proceed to the next question about lip-sync assessment for the same two
videos (see Fig. 15).
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Figure 17. Additional results with the same input audio but different input emotion.
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Figure 18. Additional results with the same input audio but different input emotion.
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