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ABSTRACT
Previous works on voice-face matching and voice-guided face syn-
thesis demonstrate strong correlations between voice and face,
primarily relying on coarse semantic cues such as gender, age,
and emotion. In this paper, we aim to investigate the capability
of reconstructing the 3D facial shape from voice from a geometry
perspective without any semantic information. We propose a voice-
anthropometric measurement (AM)-face paradigm, which identifies
predictable facial AMs from the voice and uses them to guide 3D
face reconstruction. By leveraging AMs as a proxy to link the voice
and face geometry, we can eliminate the influence of unpredictable
AMs and make the face geometry tractable. Our approach is eval-
uated on a new dataset with ground-truth 3D face scans and cor-
responding voice recordings, and we find significant correlations
between voice and specific parts of the face geometry, such as the
nasal cavity and cranium. Our work offers a new perspective on
voice-face correlation and can serve as a good empirical study for
anthropometry science. Code: https://github.com/lxa9867/VAF.

CCS CONCEPTS
• Computing methodologies→ Appearance and texture represen-
tations.
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1 INTRODUCTION
The study of face-voice correlation has been extensively inves-
tigated in recent years. Previous works on voice-face matching
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Figure 1: (a) Human voice production. (b) Linear predictive
coding represents the voice by a unit impulse with a set of
linear filters which can be interpreted as an estimation of
the vocal tract. (c) Our voice-AM-Face pipeline first predicts
and verifies predictable anthropometricmeasurements (AMs)
and then utilizes AMs to guide 3D face reconstruction. A
phonatory module is involved to obtain a better representa-
tion for AM prediction.

[28, 45, 54], voice-guided face synthesis [9, 16, 19, 55], and voice-
guided face modification have indicated a strong correlation be-
tween voice and face. The most intuitive and commonly used con-
sensus encoded between voice and face is mainly based on se-
mantics, such as gender, age and emotion. Most prior works aim
to learn a semantic correspondence between voice and face and
conduct crossmodal tasks by leveraging those consensuses. For
example, for voice-guided face synthesis, the generated faces have
reasonable appearances with proper gender, age and emotion status
corresponding to the voice. Those semantic correlations are strong
and easy to learn thus dominant previous models while a funda-
mental question we want to cast is, are there any other voice-face
correlations except for those coarse semantics? Is reconstructing
identity-fidelity 3D face from voice possible? In this paper, we aim
to explore the voice-face correlations in a geometry view after
constraining all those easily learned semantic biases.

There are several previous works investigating recovering face
from voice. Most of them are from a 2D perspective [16, 19, 55],
which utilize Generative Adversarial Network (GAN) [14, 26] to
generate faces with voice as the condition. However, face recov-
ering from voice is ill-posed. [29] found that the recovery mainly
focuses on some semantics of the speaker. For example, attributes

2458

https://github.com/lxa9867/VAF
https://doi.org/10.1145/3581783.3611779
https://doi.org/10.1145/3581783.3611779
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3581783.3611779&domain=pdf&date_stamp=2023-10-27


MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Xiang Li et al.

such as ethnicity have weak or no function while gender and age
tend to be recovered. Since those models mainly rely on semantics,
the results are not identity-fidelity which means generated faces
can look very different from the original ones. In addition, for a
2D face image, identity-unrelated factors like expressions, hairs,
glasses, illumination, background, etc., are also involved in the re-
covery process leading to noisy and unstable outcomes. Different
from 2D images, general 3D facial shape is represented by the 3D
coordinates of a number of points on its surface called vertices [4]
which inherently excludes the identity-unrelated factors. Moreover,
since the topology of 3D facial shape is predefined and consistent
across different faces, we can easily measure the reconstruction
accuracy with distances between the predicted vertices and their
ground truths.

Similar to our target, one recent work [48] attempts to recover 3D
faces from voice while, due to the lack of ground-truth 3D face scans,
they first generate 2D face images from voice and then reconstruct
3D faces guided by an off-the-shelf 3D face reconstruction model.
The noise enrolled in the 2D-to-3D face reconstruction makes the
result unconvincing. For example, any expression in the 2D face
from the first stage will force the reconstructed 3D face to have the
same expression. In this way, we consider the face is still determined
by the first-stage 2D face image.

In our method, we aim to disable all previously used semantics,
e.g., gender, age and emotion, and focus on the voice-face correla-
tion from a pure geometry view. Before introducing our method,
let us go back and understand how voice is generated by human
beings. voice is produced by phonatory structures (Fig. 1 (a)), e.g.,
vocal tract and vocal cords. Specifically, when producing vowels,
the vocal cords vibrate with no obstruction in the vocal tract. In
contrast, for most consonants, the phonation purely depends on
the vocal tract resonance with a pulmonic airflow. The vocal tract
can be assumed as a filter that makes the phonemes versatile and
personalized. With the phonation mechanism of human beings,
as shown in Fig. 1 (b), Markel et al introduces linear predictive
coding (LPC) [25] which models phonation as a unit impulse signal
modified by a stack of tubes (vocal tract) and encodes personalized
voice by vocal tract coefficients. The LPC yields a good physical
model of the vocal tract with only voice inputs in an unsupervised
manner. As the mouth and nose serve as the most important parts
of the vocal tract, we hypothesize that their geometry should be
encoded in the voice. With the tight bind of muscles and skeletons,
other parts of face geometry may also be represented by voice.

Though voice and face geometry should have some correlations,
we have no idea about which part of the face voice can represent.
Constructing uncorrelated relations will lead to random results and
raise the model instability. To tackle this problem, we introduce
the voice-anthropometric measurement (AM)-face paradigm. Pre-
vious studies have shown that anthropometric measurements like
the dimensions of nasal cavities [43] or cranium [49, 50] directly
influence the speaker’s voices. In our voice-AM-face paradigm,
we first summarize a set of AMs from anthropometry literature
[10, 11, 33, 39, 56], then identify predictable AMs and use them to
guide the 3D face reconstruction by conducting AM-guided opti-
mization. By leveraging AMs as a proxy to link the voice and face
geometry, we can eliminate the influence of unpredictable AMs and
make the face geometry tractable. In addition, the analysis of AMs

also brings a new view to understanding voice-face correlation in a
fine-grained fashion.

Inspired by LPC which learns the shape of the vocal tract by pro-
ducing voice, we utilize a phonatory module to facilitate voice repre-
sentation learning for face geometry. Similar to the auto-regressive
impulse-by-filter model used in LPC, recently introduced denoising
diffusion probabilistic models [18] share a similar structure, which
samples a random noise with auto-regressive updating to form
the final result. Based on the structure similarity, we choose the
diffusion model as our phonatory module.

With the predicted AMs, we reconstruct the facial shapes by an
optimization-basedmethod, which first projects the 3D facial shapes
into a low-dimensional linear space [4]. By adjusting the coefficients
in low-dimensional space, we obtain different re-projected 3D facial
shapes. Though this paper mainly focuses on understanding the
relationship between the 3D facial shape and voice from a scientific
angle, this technique has its potential applications. For example,
the identity-fidelity facial shape can be used for criminal profiling
scenarios, such as hoax calls and voice-based phishing.

In this paper, we try to answer two core questions - (1) Is there
a correlation between face geometry and voice? (2) If so, which
part of the face can be represented by the voice? To fulfill our
target, we collect a large-scale dataset containing ground-truth 3D
face scans and corresponding voice recordings from 1026 speaker
identities. A voice-AM-face paradigm equipped with a phonatory
module is proposed for analyzing the voice-face correlation. Our
contributions can be summarized as follows.

• We propose a voice-AM-face paradigm and a corresponding
voice-face dataset for tractable 3D face deduction from voice.

• We investigate voice-face correlation in a fine-grained man-
ner by statistically verifying which part of the face can be
reflected by the voice. The results can serve as a good refer-
ence to support future voice-face research, such as voice-face
verification.

• We leverage voice production as a proxy task to learn face
geometry representation and verify that voice production is
highly related to 3D facial shapes.

2 RELATEDWORKS
2.1 Voice-face Correlation
The human voice contains rich information that can be used to
recognize personality traits, such as speaker identity [6, 24, 34],
gender [22], age [15, 30, 40], and emotion status [44, 52]. Voices
can also be used for monitoring health conditions [1] and other
medical applications [17]. Most existing works in this area focus
on predicting personality traits that are intuitively related to voice.
Such personality traits may have essential correlations between the
human voice and their faces [46].

Cross-modal voice-face matching [28, 45, 54] and cross-modal
verification [27, 38, 42] are tasks where voices are used as queries
to retrieve faces or vice versa, which have received increasing atten-
tion in recent years. Voice-guided face synthesis is another related
task, which aims to generate coherent and natural lip movements,
and includes methods that drive template images [16, 19, 55] or
template face meshes [9] to talk by speech inputs, or replace lip
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movements in a video with movements inferred from another video
or speech [8, 47].

Unlike the existing work in related fields that are more focused
on semantic correlations between voice and face, our work investi-
gates the voice-face correlation from a geometry view by studying
holistic facial structures. There has been recent work that seeks to
understand the correlations between voice and facial geometry by
first recovering 2D faces from voice and then reconstructing 3D
faces from the 2D representations [48]. However, during this pro-
cess, it is still inevitable that the semantic correlations are encoded
in the 2D face and affect the 2D-to-3D face reconstruction. Instead,
we aim to model our voice-face correlation from a pure geometry
view without the influence of any semantics.

2.2 Phonation and Anthropometry
The human voice is generated by phonatory structures, and the
phonation of different phonemes may be dependent on different
physiological structures. By utilizing such properties, it has been
proven to be informative and helpful in various tasks, including
automatic speech recognition [12], speech enhancement [51], and
emotion recognition [13]. Beyond those language-related usages,
human attributes are also predictable from voice. There is a substan-
tial body of research on inferring human attributes from a person’s
voice, including speaker identity [7, 35], age [3, 31], gender [23],
face [32], and emotion status [44, 53].

To explicitly describe the correspondence between vocal and
facial features, anthropometric measurements have been used in
a wide range of applications to associate with voice production
[10, 11, 33, 39, 41, 56]. In a broad sense, AMs may cover various
body parameters and characteristics, including skeletal proportions,
race, height, body size, etc. These characteristics may influence the
phonation of voice by the differences in the placement of the glottis,
length of vocal cords, etc.

In this work, we summarize a large set of AMs that is highly
associated with voice-face correlation. Meanwhile, we also identify
the predictable AMs to guide the 3D facial shape reconstruction.
The results can serve as a good reference to support future voice-
face research.

3 METHOD
In this section, we first introduce the task formulation and then
demonstrate our method in detail.

3.1 Formulation
We aim to reconstruct any speaker’s 3D facial shape from their
voice recordings. Given a set of paired voice recordings and 3D
facial shapes {(𝑣𝑖 , 𝑓𝑖 )} from different individuals, where 𝑣𝑖 is a voice
recording spoken by the 𝑖-th person and 𝑓𝑖 is a 3D facial shape
scanned from the speaker of 𝑣𝑖 . The goal is to reconstruct the 3D
facial shape 𝑓 of any speaker from their voice recording 𝑣 . In our
method, we introduce anthropometric measurements (AMs)𝑚 =

{𝑚 (1) , · · · ,𝑚 (𝑘 ) } computed from 𝑓 as a proxy, where𝐾 is a positive
integer and𝑚𝑘 (𝑘 ∈ [1, 𝐾]) denotes the 𝑘-th AM. Accordingly, the
overall dataset is denoted as D = {(𝑣𝑖 , 𝑓𝑖 ,𝑚𝑖 )}. To statistically
analyze the results, we construct an additional validation set for
empirically validating the dependency. Specifically, the datasetD is

split into a training set D𝑡 for model learning, a validation set D𝑣1
for model selection, a validation set D𝑣2 for AM selection, and an
evaluation setD𝑒 for evaluating the reconstructed 3D facial shapes.
All splits have no overlap.

3.2 Pipeline Overview
As shown in Fig. 2, the proposed method has three main compo-
nents - facial AM prediction, AM-guided reconstruction and an
auxiliary phonatory module. On one hand, we predict the AMs that
are potentially correlated with voice production from anthropome-
try literature [10, 11, 33, 39, 56]. An estimator E is trained with un-
certainty learning with a voice code 𝑒 . On the other hand, inspired
by the voice production mechanism, we introduce a phonatory
module as a constraint to facilitate the training of AM prediction.
In particular, a diffusion-based voice generation module is involved
as the phonatory module which aims to imitate the voice identity
conditioning on the voice code 𝑒 . After that, we select the AMs
predictable from voice for hypothesis testing. The null hypothesis
is made for each AM and states the AM is unpredictable from voice.
We can successfully reject the corresponding null hypothesis if any
AM estimation is better than chance on a held-out validation set
with statistical significance. The final 3D facial shapes can be recon-
structed by a fitting process [5] based on the predictable AMs. This
is conducted by adjusting a set of coefficients in low-dimensional
space, such that the differences between the AMs of the generated
3D facial shape and the predicted AMs are minimized. Intuitively,
if there are more predictable AMs spanning different locations of a
face, the reconstruction can be more indistinguishable.

3.3 Facial AM Prediction
In this section, we illustrate our method to predict facial AMs from
voice.

AM summarization. There is a large body of literature on an-
thropometry. Extensive studies show that many AMs of human
faces can be associated with voice production [10, 11, 33, 39, 56].
We summarize the most commonly used AMs as shown in Fig. 3
(the complete list of AMs is available in the appendix). The chosen
AMs are categorized as proportion, angles and distance of a set of
face landmarks. Those intra-face features are more robust than 3D
coordinate representations as the variations resulting from spatial
misalignment are completely eliminated.

Uncertainty-aware AM estimation. The AM prediction is con-
ducted by an estimator trained with an uncertainty-aware scheme.
Let 𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) : 𝑣 ↦→ R be an estimator thatmaps voice recording
𝑣 into the 𝑘-th predicted AMs, where E𝑘 and 𝜔𝑘 are the learnable
parameters. As this is a regression problem, we leverage

{E∗
𝑘
, 𝜔∗
𝑘
} = arg min

E𝑘 ,𝜔𝑘

1
|D𝑡 |

∑︁
(𝑣,𝑚 (𝑘 ) ) ∈D𝑡

(𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) −𝑚 (𝑘 ) )2 (1)

as the training objective for the 𝑘-th AM. |D𝑡 | is the number of
the triplets (voice, face and AMs) in dataset D𝑡 . By incorporating
uncertainty into the estimator learning, the prediction becomes a
random variable rather than a single value. We leverage a Gaussian
distribution to the prediction. The estimator 𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) maps
𝑣 into the mean of the 𝑖-th predicted AM. Similarly, we define
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Figure 2: Illustration of our analysis pipeline for voice-face correlation. We randomly pick two voice recordings with shared
speaker identity as 𝑣 and 𝑣 ′. We then analyze the relationship between each AM and voice by predicting each AM from voice
with an estimator and an intermediate voice code 𝑒. The optional phonatory module equips a diffusion-based voice generation
model with a voice code 𝑒 as a condition to conduct voice style cloning to help us understand the relationship between face
geometry and voice characteristics, which serves as an additional constraint to enforce the estimator learn voice identity. We
analyze and select AMs with hypothesis testing. The statically significantly predictable AMs are utilized for 3D facial shape
reconstruction for further analysis.

(b) Proportion (c) Angle (d) Distance(a) Landmarks

Figure 3: Examples of summarized AMs. We summarized
three types of AM: proportion, angle and distance. Those
AMs are computed from the predefined landmark on the 3D
face representation.

an uncertainty estimator 𝐺𝐿 (𝑣 ; E𝑘 , 𝜙𝑘 ) : 𝑣 ↦→ R+ ∪ {0} that 𝑣
into the variance of the 𝑘-th predicted AM. Again, E𝑘 and 𝜙𝑘 are
the learnable parameters. The predicted AM and its ground truth
become N(𝐹𝑘 (𝑣),𝐺𝑘 (𝑣)) and N(𝑚 (0) , 0) respectively [20]. Given
two random variables, a more reasonable learning objective is to
minimize their KL divergence.

{E∗
𝑘
, 𝜔∗
𝑘
, 𝜙∗
𝑘
} = arg min

E𝑘 ,𝜔𝑘 ,𝜙𝑘

1
|D𝑡 |

∑︁
(𝑣,𝑚 (𝑘 ) ) ∈D𝑡

(𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) −𝑚 (𝑘 ) )2

𝐺𝑘 (𝑣 ; E𝑘 , 𝜙𝑘 )

+ln𝐺𝑘 (𝑣 ; E𝑘 , 𝜙𝑘 )
(2)

For a fixed (𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) −𝑚 (𝑘 ) )2, there is an optimal variance
𝐺𝑘 (𝑣 ; E𝑘 , 𝜙𝑘 ) = (𝐹𝑘 (𝑣 ; E𝑘 , 𝜔𝑘 ) −𝑚 (𝑘 ) )2 such that the loss function
is minimized. Thereby the uncertainty estimator 𝐺𝑘 is learned
to produce a small variance if the prediction error is small and
vice versa. On the contrary, a smaller variance indicates that the
predicted AM is more likely to yield a small prediction error,i.e.,
close to the ground truth. In this way, we can choose to trust the

predicted AMs when the predicted variances are small, and defer
the voice recordings to human experts otherwise. An extreme case
is 𝐺𝑘 (𝑣) ≡ 1 where the uncertainty learning objective degrades to
the regular regression model.

Temporal aggregation. In practice, following the convention of
voice understanding, the long voice recording 𝑣 is fed into the
network in the form of multiple short segments {𝑣 (1) , · · · , 𝑣 (𝐿) }.
We obtain a sequence of means and variances of the predicted AM.
During training, we compute the loss for each segment individually
and average them as the training loss. While during evaluation,
the predicted AM and its uncertainty are given by aggregating
the predictions among all segments. Assuming the short segments
from a long recording are class-conditionally independent, the
formulations of aggregation are

𝑚̂ (𝑘 ) =
𝐿∑︁
𝑙=1

𝑤 (𝑘 )

𝐺𝑘 (𝑣 (𝑙 ) )
· 𝐹𝑘 (𝑣 (𝑙 ) ),

1
𝑤 (𝑘 ) =

𝐿∑︁
𝑙=1

1
𝐺𝑘 (𝑣 (𝑙 ) )

(3)

where 𝑚̂ (𝑘 ) is the aggregated mean and also the predicted 𝑘-th
AM. However, the aggregated variance 𝑤 (𝑘 ) is not used as the
uncertainty of the predicted 𝑘-th AM since the conditional inde-
pendence assumption does not always hold in cases such as noises,
silences, the computed aggregated variance will be biased by the
number of voice segments in the long recording. So we calibrate
the uncertainty as 𝑤̂ (𝑘 ) = 𝐿 ·𝑤 (𝑘 ) .

Predictable AM identification.We have collected a number of
AMs and trained estimators for predicting them. However, only a
few of the AMs are actually predictable from voice, which we had
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anticipated while designing the task. To identify those AMs, we
use hypothesis testing to them. Formally, we can write the null and
alternative hypotheses for the 𝑘-th AM as

𝐻0 : the AM𝑚 (𝑘 ) is NOT predictable from voice
𝐻1 : the AM𝑚 (𝑘 ) is predictable from voice

In order to reject 𝐻0, we only need to find a counterexample to
show that voice is indeed useful in predicting AM𝑚 (𝑘 ) . An effective
example is to compare the estimators with and without the voice
input. If there exists a learned estimator 𝐹𝑘 (𝑣) performing better
than the chance-level estimator 𝐶𝑘 without using voice input and
the results are statistically significant, we can successfully reject
𝐻0 and accept 𝐻1. Here the chance-level estimator for the 𝑘-th AM
is a constant 𝐶𝑘 = 1

|D𝑡 |
∑
𝑚 (𝑘 ) ∈D𝑡

𝑚 (𝑘 ) , which is the mean𝑚 (𝑘 )

of the training set D𝑡 . So the null and alternative hypothesis can
be rewritten as

𝐻0 : 𝜇 (𝜖𝑘/𝜖𝐶𝑘 ) ≤ 1
𝐻1 : 𝜇 (𝜖𝑘/𝜖𝐶𝑘 ) ≥ 1

where 𝜖𝑘 and 𝜖𝐶
𝑘
are the mean square errors of estimators with and

without voice inputs on validation set D𝑣2, respectively. The for-
mulations of 𝜖𝑘 and 𝜖𝐶

𝑘
are given as 𝜖𝑘 = 1

|D𝑣2 |
∑
𝑚 (𝑘 ) ∈D𝑣2

(𝑚̂ (𝑘 ) −
𝑚 (𝑘 ) )2 and 𝜖𝐶

𝑘
= 1

|D𝑣2 |
∑
𝑚 (𝑘 ) ∈D𝑣2

(𝐶𝑘 − 𝑚 (𝑘 ) )2. Since the true
variance of 𝜖𝑘/𝜖𝐶𝑘 is unknown, the type of hypothesis testing is
one-sided paired-sample t-test. The upper bound of the confidence
interval (CI) is given by

𝐶𝐼𝑢 = 𝜇 (𝜖𝑘/𝜖𝐶𝑘 ) + 𝑡1−𝛼,𝜈 ·
𝜎 (𝜖𝑘/𝜖𝐶𝑘 )√

𝑁
(4)

where 𝜇 (·) and 𝜎 (·) are the functions for computing mean and
standard deviation respectively. 𝑁 is the number of the repeated
experiments and we set 𝑁 = 100 here. 𝛼 and 𝜈 = 𝑁 − 1 are the
significance level and the degree of freedom respectively. For the
purpose of this section, we adopt the significance level of 5% and
then we can read 𝑡0.95,𝑁−1 from t-distribution table. Now we can
determine whether to reject 𝐻0 and accept 𝐻1,i.e., the AM𝑚 (𝑘 ) is
predictable from voice. According to the experimental results, the
probability that the aforementioned decision is correct is higher
than 95%,i.e., statistically significant. In contrast, 𝐶𝐼𝑢 ≥ 1 implies
that we fail to reject 𝐻0, for the current experimental results are
not statistically significant enough. Note that failing to reject 𝐻0
does not imply we accept 𝐻0.

We emphasize that it is necessary to compute 𝜖𝐶
𝑘
and 𝜖𝑘 on D𝑣2

rather thanD𝑡 orD𝑣1. This is because our estimators are trained on
D𝑡 and selected by the errors onD𝑣1, we can easily get significantly
lower 𝜖𝑘 and 𝜖𝐶

𝑘
on these splits.

Optional phonatory module. Inspired by linear predictive cod-
ing (LPC) [25] which leverages voice producing to learn vocal tract
geometry, we aim to facilitate face geometry capture by learning
characteristics of voice. We enroll a phonatory module serving as an
additional constraint when predicting facial AMs. In particular, we
leverage a diffusion-based [18] voice generation method to model
the time-domain speech signals. As shown in Fig. 2, the diffusion
model converts the noise distribution to a speech 𝑣 controlled by
the voice code 𝑒 extracted from speech 𝑣 . During training speech 𝑣 ′
which shares speaker identity with 𝑣 is fed to the diffusion model as

ground-truth. Please note that the phonatory module only serves as
an additional training constraint and is not applied during inference.
Let 𝑥0, · · · , 𝑥𝑇 be a sequence of variables with the same dimension
where 𝑡 is the index for diffusion time steps. Then the diffusion
process transforms 𝑥0 into a Gaussian noise 𝑥𝑇 through a chain
of Markov transitions with a set of variance schedule 𝛽1, · · · , 𝛽𝑇 .
Specifically, each transformation is performed according to the
Markov transition probability 𝑞(𝑥𝑡 |𝑥𝑡−1, 𝑒) assumed to be indepen-
dent of the style code 𝑒 as

𝑞(𝑥𝑡 |𝑥𝑡−1, 𝑒) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ). (5)

Unlike the diffusion process, the denoising process aims to recover
the speech signal from Gaussian noise which is defined as a condi-
tional distribution 𝑝𝜃 (𝑥0:𝑇−1 |𝑥𝑇 , 𝑐). Through the reverse transitions
𝑝𝜃 (𝑥0:𝑇−1 |𝑥𝑇 , 𝑐), the variables are gradually restored to a speech
signal with style code condition. The phonatory module actually
models a distribution 𝑞(𝑥0 |𝑐). By applying the parameterization
trick [21], we obtain the additional training constraint as

{E∗, 𝜃∗} = arg min
E,𝜃

= E𝑥0,𝜖,𝑡 ∥𝜖 − 𝜖𝜃 (
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, 𝑡, 𝑒)∥1 (6)

where 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =
∏𝑡
𝑡 ′=1 𝛼𝑡 ′ . As shown in Fig. 2, the 𝜃 is

a Net [37] with cross-attention [36]. Since the phonatory model is
only utilized as an auxiliary constraint during training, we omit
the inference details to obtain 𝑣 here.

3.4 AM-Guided 3D Facial Shape Reconstruction
To reconstruct the 3D facial shape, we first need to predict AMs of
the voice recordings in D𝑒 first. Subsequently, we generate the 3D
facial shapes based on the predicted AMs by an optimization-based
method. To do so, we first project the 3D facial shapes into a low-
dimensional linear space [5]. By adjusting the coefficients in low-
dimensional space, we obtain different re-projected 3D facial shapes.
The learning objective is to find a set of coefficients, such that the
differences between the AMs of the re-projected 3D facial shape and
the predicted AMs are minimized. Specifically, we construct a big
matrix 𝐵 = [𝑏1, 𝑏2, · · · ] ∈ R3𝑇×|D𝑡 | where each column𝑏𝑖 ∈ R3𝑇×1

is a long vector obtained by flattening a 3D facial shape 𝑓𝑖 ∈ R𝑇×3.
𝑇 is the number of vertices on 3D faces. Since 3𝑇 ≫ |D𝑡 |, we
compute the project matrix 𝑃 ∈ R3𝑇×𝑑 (𝑑 ≫ 3𝑇 ) using eigenfaces
[5] on 𝐵. Now any flattened 3D facial shape 𝑏 can be approximated
by re-projecting a low-dimensional vector 𝛽 ∈ R𝑏×1 in the form
of 𝑃𝛽 . We define the computation of AM as 𝑄𝑘 (𝑏) : 𝑏 ↦→ R, which
maps any flattened 3D facial shape 𝑏 into the 𝑘-th AM of 𝑏. Since
𝑄𝑘 (·) computes a distance, a proportion, or an angle of the 3D facial
shape, it is a differentiable function. The optimization objective is
given below.

𝛽∗ = arg min
𝛽

𝜆∥𝛽 ∥2
2 +

𝐾∑︁
𝑘=1

(𝑄𝑘 (𝑃𝛽) − 𝑚̂ (𝑘 ) )2 · 𝑧 (𝑘 ) (7)

where 𝜆 is the loss weight balancing two terms. The reconstructed
3D facial shape is given by 𝑏 = 𝑃𝛽∗.

4 EXPERIMENTS
In this section, we elaborate on the dataset setting, implementation
details and experimental results.
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Figure 4: The normalized errors and 𝐶𝐼s of 24 AMs on (a) male subset, (b) female subset, and (c) a smaller female subset. If
1 −𝐶𝐼𝑢 > 0, the AM is predictable else unpredictable.

4.1 Dataset
We perform experiments on a private audiovisual dataset D. The
dataset consists of paired voice recordings and scanned 3D facial
shapes from 1,026 people, with 364 males and 662 females. The
scanned 3D face is stored in the mesh format with 6790 points for
each face. The voice recordings are about 2 minutes long for each
speaker. We reduce the influencing factors to the voice and face
by (1) asking participants to speak a set of specified sentences, (2)
asking participants to speak without emotion, (3) control the age
of participants (roughly 18-28 years old). In addition, to prevent
the models from taking the gender shortcuts, we split the dataset
D by gender, and experiments are individually performed on male
and female subsets. For each subset, we adopt 7/1/1/1 splitting for
D𝑡 /D𝑣1 /D𝑣2/D𝑒 . In training, the voice recordings are randomly
trimmed to segments of 6 to 8 seconds, while we use the entire
recordings in testing. The ground truth AMs are normalized to
zero mean and unit variance. For voice features, we extract 64-
dimensional log Mel-spectrograms using an analysis window of
25ms, with the hop of 10ms between frames. We perform mean and
variance normalization of each Mel-frequency bin.

4.2 Implementation Details
We leverage a backbone E to learn voice code 𝑒 which is a simple
convolutional neural network. The detailed network structure is
presented in the supplementary materials. 𝐹𝑘 and 𝐺𝑘 share the
backbone’s learnable parameters but have individual parameters
for their heads. We use a single layer fully-connected network for
each head. For the variance head, we add an exponential activa-
tion to the last layer of 𝐺𝑘 for non-negative positive output. We
follow the typical settings of stochastic gradient descent (SGD) for
optimization. Minibatch size is 64. The momentum, learning rate,
and weight decay values are 0.9, 0.1, and 0.0005, respectively. The
training is completed at 5k iterations. Since the phonatory module
requires a long training procedure, we first train it with the voice
code encoder E for 60k steps on our training set D𝑡 . We follow the
training setting in [18] to train the phonatory module. The other
parameter setting follows [18]. We directly normalized the voice
signal as input to the network instead of first converting it to Log-
Mel spectrum. To ensure statistical significance, we perform N =
100 repeated experiments to compute the 𝐶𝐼𝑢 . For the experiments

2463



Rethinking Voice-Face Correlation: A Geometry View MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

Phonation Module 100% 𝑤̂ 75% 𝑤̂ 50% 𝑤̂
! 0.953± 0.009 0.909±0.024 0.842±0.030
% 0.952±0.014 0.927±0.030 0.879±0.041

Table 1: Effect of the phonatory module. Wemeasure the nor-
malized mean squared error between predicted and ground-
truth AM among all AMs with different confidence thresh-
olds.

Male Female

Figure 5: Visualization of the predictableAMs. Blue box:male,
Red box: female.

at phoneme level, we leverage Wav2Vec [2] to cut the long voice
recordings into phonemes.

4.3 Predictable AM Analysis
For AM prediction, the estimation models are trained on D𝑡 and
selected based on their performance on D𝑣1 (hyperparameter tun-
ing). For AM selection, the predictable AMs are selected based on
the upper bound of the CI (𝐶𝐼𝑢 ) on D𝑣2. The performance can be
evaluated by the mean error of each AM and its CI.

Fig. 4 shows the results, including 20 AMs with highest 1 −𝐶𝐼𝑢
and 4 AMs with lowest 1 −𝐶𝐼𝑢 . The gray bars are the results on
the entire validation set D𝑣2, while the red and yellow ones are the
results of 75% and 50% voice samples with lowest uncertainty 𝑤̂ on
D𝑣2, respectively. The self-constructed female subset has the same
size as the male subset. Higher 1 −𝐶𝐼𝑢 indicates better results and
the normalized error of 0 indicates the chance-level performance.
As suggested by our hypothesis testing formulation, the AMs with
1 −𝐶𝐼𝑢 > 0 are considered predictable from voice. In this sense, we
have discovered a number of predictable female AMs (see the gray
bars and their 𝐶𝐼𝑢 in Fig. 4 (b)). By filtering out the voice samples
with high uncertainties, we achieve even higher 1 −𝐶𝐼𝑢 (see the
red and yellow bars and their 𝐶𝐼s). The improved performance
indicates that more AMs are discovered as predictable from voice.
The complete results of all AMs are given in the appendix. The
results empirically demonstrate that the information of 3D facial
shape is indeed encoded in the voices and can be discovered by our
analysis pipeline.

To intuitively locate the predictable AMs on the 3D face, we visu-
alize them in Fig. 5. We clearly observe that most of the predictable
AMs are around nose and mouth, and many of them are shared
between male and female subsets. This is consistent with the fact
that nose and mouth shapes affect pronunciation.

We also notice that the performance of female subset is much
better than that of the male subset. To investigate whether the
improvements come from the larger data scale (364 males 𝑣 .𝑠 . 662

Phonatory Module Predictable Unpredictable
! 0.628±0.021 0.990±0.032
% 0.730±0.048 1.002±0.031

Table 2: Effect of phonatory module for predictable and un-
predictable AMs. We measure the normalized mean squared
error between predicted and ground-truth AM among all
predictable and unpredictable AMs. Interestingly, we find
phonatory module only improves predictable AMs.

females), we perform another set of repeated experiments on a
self-constructed female subset, which has the same size as the
male subset,i.e., 364 females. Surprisingly, the results on the new
subset are still better than those on the male subset, as shown in
Fig. 4 (c). This is possible because the female subjects have higher
nasalance scores on the nasal sentences [43] among other things,
which provides useful information for predicting the AMs around
the nose. Here we note that our experiments have revealed that
measurements around the nose are highly correlated to voice. More
investigations are left for future work.

On the other hand, some AMs have not been shown to be pre-
dictable from voice. This observation suggests that voices may only
associate with a few specific regions of the 3D facial shape, like the
nose and mouth. For the AMs with higher errors than chance level,
we do not claim they are not predictable from voice. Instead, we fail
to demonstrate their predictability based on our current empirical
results. The possible reasons include imperfect modeling, limited
data, data noise, etc.

4.4 Effect of Phonatory Module
As presented in Table 1, it is evident that utilizing the phonatory
module during training enhances the accuracy of predicted AMs.
Our evaluation involved computing the normalized error across all
AMs with various confidence thresholds. Although the models with
and without the phonatory module exhibited a marginal difference
in error when evaluating all the data, the ones trained with the
phonatory module showed a clear improvement in error when
considering more confident samples.

Furthermore, we conducted an error evaluation for predictable
and unpredictable AMs as depicted in Table 2. We observed that
utilizing the phonatory module resulted in a 0.102-point decrease in
normalized error for predictable AMs, highlighting its effectiveness
in improving the prediction performance. Interestingly, the phona-
tory module did not have any apparent effect on unpredictable AMs.
Overall, the results indicate that utilizing the phonatory module
during training is beneficial for predicting AMs, particularly for
predictable ones.

4.5 Phoneme-level Analysis
We also experiment with the voice-face correlation at the phoneme
level. For this experiment, we train and evaluate estimators by
taking one phoneme as input each time. We computed the average
1 −𝐶𝐼𝑢 value for each phoneme across all AMs, as shown in Fig. 7.
Our results indicate that /i:/ had the highest average 1 −𝐶𝐼𝑢 value
of 0.199, while /b/ had the lowest value of -0.06. When the 1 −𝐶𝐼𝑢
value is less than 0, it suggests that AMs are generally unpredictable
from the corresponding phoneme.
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100 % 90 % 80 % 70 % 60 % 50 %

Male

Female

Figure 6: Error maps of the reconstructed 3D facial shapes for the male and female subsets. From left to right: the error maps
corresponding to 100% (i.e. the entire test set) to 50% of the test set.

Phonemes

1
−
𝐶𝐼
!

Figure 7: Phonemes with corresponding averaged 𝐶𝐼𝑢 in de-
creasing order.

We observed that the three phonemes with the lowest and nega-
tive 1 −𝐶𝐼𝑢 values were /t/, /b/, and /d/, all of which are plosive
consonants. During the pronunciation of plosive consonants, there
is a complete stoppage of airflow followed by a sudden release of
air through minimal mouth opening and closing. As a result, there
is minimal movement of the facial muscles and structures, making
it challenging for the model to predict AMs based solely on these
phonemes.

In contrast, most vowels achieved good performance in the test
set, with all of the top 6 phonemes belonging to vowels with 1 −
𝐶𝐼𝑢 > 0.10. Compared to consonants, the production of vowels
does not involve constriction of airflow in the vocal tract. Instead,
the facial muscles have relatively greater movement during the
pronunciation of these phonemes, such as jaw movement due to
mouth opening or lip spreading. Thus, vowel phonemes may carry

more information about facial features, making it easier for the
model to capture the hidden correlation when predicting AMs.

4.6 3D Facial Shape Reconstruction
In Section 4.3, we have discovered a number of predictable AMs,
from which we choose 10 AMs with the highest 1 − 𝐶𝐼𝑢 for the
subsequent reconstructions on male and female subsets.

To evaluate the performance, we compute the per-vertex errors
between the reconstructed 3D facial shape and their ground truths.
We also filter out a portion of voice samples with the highest uncer-
tainties and evaluate the errors in the remaining data. The filter-out
rate is from 0% to 50%, as shown from left to right in Fig. 6.

Unsurprisingly, we achieve the lowest errors around the nose
region for male and female subsets, consistent with the AM estima-
tions. Moreover, the reconstruction errors decrease significantly by
filtering out the voice samples with the highest uncertainties. This
indicates that the learned uncertainty is effectively associated with
the reconstruction quality and allows the system to decide whether
to trust the model or not.

5 CONCLUSION
In conclusion, this paper presents a novel approach to exploring
the voice-face correlation by focusing on the geometric aspects
of the face rather than relying on semantic cues such as gender,
age, and emotion. The proposed voice-anthropometric measure-
ment (AM)-face paradigm identifies predictable facial AMs from the
voice to guide 3D face reconstruction, which results in significant
correlations between voice and specific parts of the face geome-
try, such as the nasal cavity and cranium. This approach not only
eliminates the influence of unpredictable AMs but also offers a new
perspective on voice-face correlation, which can be valuable for an-
thropometry science. The results of this study open up possibilities
for future research in this area, such as developing more accurate
voice-guided face synthesis techniques and a better understanding
of the relationship between voice and facial geometry.
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