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Abstract
Deep convolutional neural networks (CNNs) trained with the softmax loss have achieved remarkable successes in a number of
close-set recognition problems, e.g. object recognition, action recognition, etc. Unlike these close-set tasks, face recognition
is an open-set problemwhere the testing classes (persons) are usually different from those in training. This paper addresses the
open-set property of face recognition by developing the center loss. Specifically, the center loss simultaneously learns a center
for each class, and penalizes the distances between the deep features of the face images and their corresponding class centers.
Training with the center loss enables CNNs to extract the deep features with two desirable properties: inter-class separability
and intra-class compactness. In addition, we extend the center loss in two aspects. First, we adopt parameter sharing between
the softmax loss and the center loss, to reduce the extra parameters introduced by centers. Second, we generalize the concept
of center from a single point to a region in embedding space, which further allows us to account for intra-class variations.
The advanced center loss significantly enhances the discriminative power of deep features. Experimental results show that
our method achieves high accuracies on several important face recognition benchmarks, including Labeled Faces in the Wild,
YouTube Faces, IJB-A Janus, and MegaFace Challenging 1.
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1 Introduction

Convolutional neural networks (CNNs) together with the
softmax loss have achieved significant successes in computer
vision, substantially improving the state of the art in a series
of close-set recognition tasks, such as object (Krizhevsky
et al. 2012; He et al. 2015a), scene (Zhou et al. 2014a, b),
action (Baccouche et al. 2011; Wang et al. 2015b) and so on.
In these tasks, the possible categories of the testing samples
are predefined in the training set and the predicted labels
determine the performance. As a result, the softmax loss
is widely adopted by many CNNs (Krizhevsky et al. 2012;
Simonyan and Zisserman 2014; Szegedy et al. 2015; He et al.
2015a) due to its simplicity, good performance, and proba-
bilistic interpretation. As shown in Fig. 1a, the commonly
used CNNs perform feature extraction and label prediction,
mapping the input data to deep features, then to the predicted
labels.

However, the conventional softmax loss may not be par-
ticularly effective for face recognition, which by nature is
an open-set problem. Despite its excellent performance on
close-set recognition, the softmax loss does not explicitly
encourage the intra-class compactness of the features (Liu
et al. 2016). The resulting features are separable but not
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Fig. 1 Comparison between close set and open set recognitions. a The
CNN frameworks for close-set problems. The decision boundaries are
available in both the training and testing. b The CNN frameworks for
open-set problems. The decision boundary is not available in the testing
because of the new unseen classes

discriminative, leading to inferior performance for open-set
task, like face recognition. The discriminative power here
characterizes features in both the inter-class separability and
the intra-class compactness.

Considering a real-world scenario, it is impractical to pre-
collect all the possible testing identities in the training phase.
The label prediction in CNNs is not always applicable, espe-
ciallywhen identifying a new unseen identity in testing. Such
evidence indicates that our recognition results can only be
derived from the deeply learned features, e.g. the distance (or
similarity) between two features. From Fig. 1a we can easily
see that separable features do NOT guarantee the correctness
on open-set recognition. Given x1, x2 belonging to class 1,
and x3 belonging to class 2, the intra-class distance d(x1, x2)
can be larger than inter-class distance d(x1, x3), leading to
failed recognition. On the other hand, discriminative (not just
separable) features (Fig. 1b) perform much better, since they
have both the intra-class compactness and inter-class sep-
arability. In particular, if the maximal intra-class distance
is smaller than the minimal inter-class distance, we can cor-
rectly perform open-set face recognition for pairs of samples.

In practice, it is challenging to develop an appropriate loss
function for discriminative feature learning in CNNs. Due to
the huge scale of training set for CNNs, it is extremely time-
consuming to extract the deep features of all training samples
in each iteration. Traditional loss functions like linear dis-
criminant analysis (LDA) (Mika et al. 1999) need to take
the entire training set into account. As a result, they cannot
be simply applied to CNNs, which usually work on samples
of a mini-batch. As alternative approaches, contrastive loss

(Hadsell et al. 2006; Sun et al. 2014a) and triplet loss (Schroff
et al. 2015) design intuitive learning objectives based on
image pairs and triplet, respectively. However, compared to
the image samples, the number of the possible training pairs
or triplets dramatically grows. It inevitably results in slow
convergence and instability. By carefully selecting the image
pairs or triplets, the problem may be partially alleviated. But
it significantly increases the computational complexity and
the makes training process inconvenient.

In this paper, we propose a novel loss function, called
center loss. The center loss learns a center (a vector with
the same dimension as a feature) for deep features of each
class. Although the global distribution of deep features are
not available, it could be approximately characterized by the
learned centers, since center/mean provides the first order
statistics of the distribution. In the course of training, we
simultaneously update the centers andminimize the distances
between the deep features and their corresponding class cen-
ters. The CNNs are trained under the joint supervision of the
softmax loss and the center loss, with a hyper parameter to
balance the two supervision signals. Intuitively, the softmax
loss forces the deep features of different identities staying
apart. The center loss efficiently pulls the deep features of
the same class to their centers.With the joint supervision, not
only the inter-class features differences are enlarged, but also
the intra-class features variations are reduced. The discrimi-
native power of the deeply learned features are significantly
enhanced. Our main contributions are summarized below.

– We propose a novel loss function, called center loss to
minimize the intra-class distances of the deep features.
By adding a branch of center loss in parallel with the
existing softmax loss, the CNNs yield highly discrimina-
tive features for robust face recognition, as supported by
our experimental results.

– We show that the center loss is trainable and can be
optimized by stochastic gradient descent (SGD). More
importantly, the center loss enjoys the same requirement
as the softmax loss, and needs no complex samples min-
ing in the training.

– We present extensive experiments on Labeled Faces in
the Wild (LFW), YouTube Faces (YTF), IJB-A Janus,
and MegaFace Challenging 1. Significant improvements
demonstrate the effectiveness of the proposed center loss.

A preliminary version of this manuscript has been pub-
lished in ECCV 2016 (Wen et al. 2016b). Since then, the
center loss has witnessed other applications beyond face
recognition, such as image retrieval (Yao et al. 2017), person
re-identification (Jin et al. 2017), document semantic struc-
ture extraction (Yang et al. 2017), autoencoder (Chu and Cai
2017), and speaker recognition (Bredin 2017; Wisniewksi
et al. 2017). In spite of its usefulness, the center loss still
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has some limitations: (1) The center loss introduces extra
parameters in training CNNs, increasing the model size. (2)
The center loss makes a strong assumption that the deep fea-
tures of an identity should be as closed as possible to their
class center, which is a single point in embedding space. The
following describes how we address the limitations from the
conference version.

– Weadopt parameter sharingbetween the softmax loss and
the center loss, greatly reducing the network parameters
and leading to better performance. It is particularly useful
for face datasets with more than thousands of identities.
More importantly, the recognition performance can be
further improved with this technique.

– We show that the concept of center is not limited to a
single point in embedding space. Instead, it can be gener-
alized to a region.Wepresent anEuclideandistance based
region to make the center loss more flexible and general.

– We present comprehensive ablation study for the cen-
ter loss, and new experiments on large-scale benchmarks
- IJB-A Janus (Klare et al. 2015). The state-of-the-
art results on these challenging benchmarks show clear
advantages of the proposed methods. The code and mod-
els are publicly available on https://github.com/ydwen/
centerloss.

2 RelatedWork

Loss functions for close-set recognition Softmax loss is
widely used in close-set recognition tasks, like object
(Krizhevsky et al. 2012), scene (Zhou et al. 2014a), action
(Wang et al. 2015b), etc. Alternatively, Vinyals et al. (2012),
Nagi et al. (2012), Tang (2013) applied hinge loss in CNNs,
which provided more geometric interpretation. Magnet loss
(Rippel et al. 2015) is proposed to explicitly address the deep
metric learning with the concept of center. However, it is not
as scalable as center loss because it defines multiple centers
for each class. To train the CNNs, the samples in minibatches
have to be carefully selected and the K-means algorithm is
adopted to update the centers.

Traditional face recognition Early works focused on
subspace-based face recognition. Belhumeur et al. (1997),
Wang and Tang (2004), Prince and Elder (2007) decomposed
the face representations into several components to facilitate
the subsequent recognition. Sparse representation based clas-
sification (Wright et al. 2009) and its variants (Zhang et al.
2011) encode faces over the subspace of template images.
The recognition is performed based on the reconstruction
error of each class. To improve the face representations, sev-
eral papers investigated SIFT (Lowe 2004), HoG (Dalal and
Triggs 2005), LBP (Ahonen et al. 2006) and its variants (Lu

et al. 2015; Duan et al. 2017), and learned features (Cao
et al. 2010). To obtain compact features, many efforts (Chen
et al. 2012, 2013; Simonyan et al. 2013) focused on discrim-
inative dimension reduction. These approaches further boost
the accuracy and improve the efficiency. Our center loss can
be related to these works in sense of discriminative feature
learning, but with more focus on deep CNN framework.

Deep face recognition Face recognition via deep learning
has witnessed a series of breakthrough in recent years (Sun
et al. 2013; Taigman et al. 2014; Sun et al. 2014a; Schroff
et al. 2015; Parkhi et al. 2015; Wang et al. 2018a, b). The
idea of learning a neural network that maps a pair of face
images to a distance starts from Chopra et al. (2005). They
train siamese networks for driving the similarity metric to
be small for positive pairs, and large for the negative pairs.
Hu et al. (2014) learn a nonlinear transformations and yield
discriminative deep metric with a margin between positive
and negative face image pairs.

DeepFace (Taigman et al. 2014; Sun et al. 2014b) super-
vised the learning process inCNNs by challenging identifica-
tion signal, which can bring richer identity-related informa-
tion to deeply learned features.After that, joint identification-
verification supervision signal was adopted in Sun et al.
(2014a); Wen et al. (2016a), leading to more discrimina-
tive features. Sun et al. (2015) enhanced the supervision by
adding a fully-connected layer and loss functions to each
convolutional layer. The effectiveness of triplet loss had been
demonstrated in Schroff et al. (2015); Parkhi et al. (2015); Liu
et al. (2015).With the deep embedding, the distance between
an anchor and a positive is minimized, while the distance
between an anchor and a negative is maximized until the
margin is met. Song et al. (2016), Sohn (2016), Tadmor et al.
(2016) explored the sample combination in the minibatch,
leading to faster convergence and better performance.

Very recently, Liu et al. (2017b), Wang et al. (2017),
Ranjan et al. (2017) propose to directly optimize the cosine
similarity between deep features. The weight parameters in
the softmax loss are normalized, and the deep features are
normalized then rescaled. This simple idea achieves better
performance than the softmax loss. Liu et al. (2017a) imposes
discriminative constraints on a hyperspheremanifold to learn
discriminative deep features with angular margin. It is worth
mentioning that the aforementioned works aim to learn
discriminative feature in angular perspective, while center
loss pays more attention to the Euclidean space. These two
branches of approaches can be complementary with each
other.

3 The Proposed Approach

We elaborate our approach in this section. A toy example
is presented to intuitively visualize and analyze the distribu-
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Table 1 The detailed network configurations of LeNets and LeNets++

Layer LeNet LeNet++

Conv1 (5, 20)/1,0 (5, 32)/1,2 × 2

Pool1 2/2,0 2/2,0

Conv2 (5, 50)/1,0 (5, 64)/1,2 × 2

Pool2 2/2,0 2/2,0

Conv3 – (5, 128)/1,2 × 2

Pool3 – 2/2,0

FC1 500 2

Loss 10-way softmax loss 10-way softmax loss

(5, 32)/1,2×2 denotes 2 cascaded convolutional layers with 32 filters of
size 5× 5, where the stride and padding are 1 and 2, respectively. 2/2,0
denotes the max-pooling layers with the grid of 2× 2, where the stride
and padding are 2 and 0 respectively. We use the Parametric Rectified
Linear Unit (PReLU) (He et al. 2015b) as nonlinear unit

tions of the CNN features learned by softmax loss. Inspired
by the distribution, we develop the center loss to improve the
discriminative power of the deeply learned features. Addi-
tionally, we propose two improvements for the center loss,
followed by discussions.

3.1 A Toy Example

A toy example onMNIST (LeCun et al. 1998b) dataset is pre-
sented. Note that the output number of the last hidden layer is
reduced to 2 (means that the deep features are 2-dimentional
vectors), which enables us to directly plot the features on
2-dimensional plane for visualization. To prevent the under-
fitting caused by low-dimensional features, we propose a
deeper and wider variant of LeNets (LeCun et al. 1998a),
called LeNets++ for this experiment. LeNets++ are essen-
tially constructed by stacking convolutional layers, option-
ally followed by max-pooling layers. The details of the net-
work architecture are given in Table 1.We train the LeNets++
on MNIST with the conventional softmax loss, as written in:

LS = − 1

m

m∑

i=1

log
ew

T
yi
xi+byi

∑n
j=1 e

wT
j xi+b j

. (1)

Here xi ∈ R
d is the deep feature of i th sample, belonging

to the yi th class. w j ∈ R
d is the j th column of the weights

parameters W = [w1,w2, . . . ,wn] ∈ R
d×n in the softmax

loss and b ∈ R
n is the bias term. m, n, and d are the number

of samples inmini-batch, total number of classes, and feature
dimension, respectively.

The resulting 2-D deep features are plotted in Fig. 2. This
illustration provides several insights: (1) The softmax loss
acts like a linear classifier for deep features, deriving linear
decision boundaries between the features of different classes;
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Fig. 2 The distributions of deeply learned features in a training set b
testing set, both under the supervision of softmax loss.Weuse 50K/10K
train/test splits. The points with different colors denote features
from different classes. Best viewed in color (Color figure online)

(2) Under the supervision of softmax loss, the deeply learned
features are prone to be separable; and (3) The deep features
are not discriminative enough, since they still show signif-
icant intra-class variations. As a result, it is not suitable to
directly use these features for face recognition, where the
testing classes are different from those in training set.

3.2 Center Loss

The above analysis motivates us to develop an effective loss
function to improve the discriminative power of the deeply
learned features. Intuitively,minimizing the intra-class varia-
tions while keeping the features of different classes separable
is the key. The above toy example shows that the softmax loss
contributes to enlarge the inter-class distance, exposing the
considerable intra-class variation as a bottleneck. Inspired by
the feature distribution in Fig. 2, we propose the center loss,
as formulated in:

LC = 1

2m

m∑

i=1

‖xi − cyi ‖22, (2)

where cyi ∈ R
d is the center for deep features xi of yi th class.

This simple formulation effectively characterizes the intra-
class variations by penalizing the distances between the deep
features and their centers. However, optimizing Eq.3.2 is
non-trivial because both xi and cyi are unknown.Specifically,
xi is determined by the learnable parameters in CNNs and
cyi is given by the average of deep features belonging the yi th
class. Ideally, cyi should be updated as the deep features xi
changed in the training process. In other words, we need to
take the entire training set into account and average the deep
features of every class in each iteration, which is inefficient
even impractical. Therefore, the center loss cannot be used
directly.

To address this problem,wemake twonecessarymodifica-
tions. First, instead of updating the centers with respect to the
entire training set, we perform the update based on the sam-
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Algorithm 1 CNNs training algorithm with joint supervision

Input: Training data {xi }. Initialized parameters θC in convolutional layers. Parameters {w j | j = 1, 2, . . . , n} and {c j | j = 1, 2, . . . , n} in loss
layers, respectively. Hyper-parameter λ and learning rate μt . The number of iteration t ← 0.

Output: The parameters θC .
1: while not converge do
2: t ← t + 1.
3: Compute the joint loss by Lt = Lt

S + λLt
C .

4: Compute the backpropagation gradients ∂Lt

∂xti
for each i by ∂Lt

∂xti
= ∂Lt

S
∂xti

+ λ · ∂Lt
C

∂xti
.

5: Update w j for each j by wt+1
j = wt

j − μt · ∂Lt
S

∂wt
j
.

6: Update c j for each j by ct+1
j = ctj − μt · Δctj .

7: Update the CNNs parameters θC by θ t+1
C = θ tC − μt ∑m

i=1
∂Lt

∂xti
· ∂xti

∂θ tC
.

8: end while

ples in mini-batch. In each iteration, the centers are updated
by averaging the features of the same class in the mini-batch.
This strategy works well in CNNs with SGD training, where
only deep features of one mini-batch are exposed. Note that
some of the centersmay not be updated if themini-batch does
not include the features of corresponding classes. Second, to
avoid large perturbations on centers caused by few misla-
beled samples, we use moving average strategy to control
the learning of the centers. The gradients of LC with respect
to xi and cyi are given by:

∂LC

∂xi
= 1

m
(xi − cyi ), (3)

Δc j =
∑m

i=1 δ(yi = j) · (c j − xi )

ε + ∑m
i=1 δ(yi = j)

, (4)

where δ(condition) = 1 if the condition is satisfied, and
δ(condition) = 0 if not. ε is a small positive number to
avoid zero denominator, e.g. ε = 1e−5.

Note that the center loss cannot be used independently,
otherwise the deeply learned features and centers will
degraded to zeros (at this point, the center loss is very small).
On the other hand, if we only use the softmax loss as supervi-
sion signal, the resulting deeply learned features contain large
intra-class variations. Simply using either of them could not
achieve discriminative feature learning. Hence it is necessary
to combine them to jointly supervise the CNNs, as confirmed
by our experiments. The formulation is given in:

L = LS + λLC

= − 1

m

m∑

i=1

log
ew

T
yi
xi+byi

∑n
j=1 e

wT
j xi+b j

+ λ

2m

m∑

i=1

‖xi − cyi ‖22,

(5)

where a scalar λ is used for balancing the two loss functions.
The conventional softmax loss can be considered as a special
case when λ is set to 0. Clearly, the CNNs under the joint
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Fig. 3 Thedistributions of deeply learned features under the joint super-
vision of softmax loss and center loss. λ is the loss weight for center
loss. The points with different colors denote features from different
classes. Different λs lead to different deep feature distributions. The ×
Marks are the learned centers, and the vectors with dotted line are the
learned weight parameters in the softmax loss. Best viewed in color
(Color figure online)

supervision are trainable and can be optimized by standard
SGD. We summarize the learning details in Algorithm 1.

The initialization of centers has two options: (A) Each c j
is initialized by the average of the yi th class deep features
{xi }, which are extracted by randomly initialized CNNs; (B)
Each c j is randomly initialized by common initializers like
Gaussian orXavier (Glorot and Bengio 2010). We empiri-
cally compare them and could not see any difference. So we
adopt the option B for center initialization in all the experi-
ments since it is computationally efficient.

We also conduct experiments to illustrate how the λ influ-
ences the distribution. Figure3 shows that different λ lead
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to different deep feature distributions. With proper λ, the
discriminative power of deep features can be significantly
enhanced. Moreover, features are discriminative within a
wide range of λ. Therefore, the joint supervision benefits
the discriminative power of deeply learned features, which
is crucial for face recognition.

3.3 Parameter Sharing

We note that the two loss functions in joint supervision share
lots of commons in learning deep features. Briefly, the soft-
max loss maximizes wT

yi xi while the center loss minimizes
‖xi − cyi ‖22. In the course of learning, bothwyi and cyi grad-
ually close to xi in terms of angular and Euclidean distance,
respectively. It implies that wyi and cyi may have similar
directions in well-trained CNNs, which can be empirically
verified in Fig. 3. Similar idea is also reported and analyzed
by Wang et al. (2017); Liu et al. (2017b). Such evidences
indicate that we may have over parameterized the CNNs in
the joint supervision framework.

To reduce the redundancy, we adopt the parameter sharing
between the softmax loss and the center loss. The center ci
is hence reparametrized as γiwi , as given by Eq.6:

LC∩ = 1

2m

m∑

i=1

‖xi − γyiwyi ‖22. (6)

γi is a scaling parameter, controlling the center magnitude.
wi is reused to specify the center direction.With this strategy,
the number of the learnable parameters in center loss is now
reduced from nd ({c j }nj=1) to n ({γ j }nj=1). Based on Eq.6,
we can derive the updating rule for γ j .

Δγ j =
∑m

i=1 δ(yi = j) · (γ j − xTi wyi /w
T
yiwyi )

ε + ∑m
i=1 δ(yi = j)

. (7)

Moreover,we can impose constraint on {γ j }nj=1 tomake them
equivalent to each other. It further reduces the number of
learnable parameters from n ({γ j }nj=1) to 1 (γ ), which is
negligible. The formulation and its updating rule are given
by:

LC+∩ = 1

2m

m∑

i=1

‖xi − γwyi ‖22,

Δγ = γ −
∑m

i=1 x
T
i wyi

ε + ∑m
i=1w

T
yiwyi

.

(8)

For convenience, we term the vanilla center loss (Eq.2)
as CL. The advanced CLs (LC∩ from Eq.6 and LC+∩ from
Eq.8) with parameter sharing are called ACL and ACL-γ ,
respectively.
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Fig. 4 The illustrations for the generalized center

3.4 Generalized Center

The center loss makes a strong assumption that the deep fea-
tures from the same class should be as closed as possible
to their center, which is a single point in embedding space.
It overestimates the learning ability of CNNs, and ignores
the fact that face images from the same identity may exhibit
inherent large variation due to pose, age, illumination, occlu-
sion and other factors. Consequently, we can slightly relax
the learning objective of center loss by allowing reasonable
intra-class variations.

In embodying this philosophy, we generalize the center
from a single point to a region, as illustrated in Fig. 4. This
allows the deep features to preserve necessary intra-class
variations. The generalized center can be seen as a circle
in 2-dimensional case, or a hypersphere in high-dimensional
case. ρ is introduced as a hyper-parameter to specify the
radius of the regions. The distance between feature xi and
its center region is defined as the distance between xi and a
dynamic center c′yi , where the c′yi has the minimal distance
to xi within the region, as shown in Fig. 4. The formulation
is given by:

c′yi = cyi + κi (xi − cyi ). (9)

The κi is given by min( ρ
di

, 1), and di is the distance between

xi and cyi , given by
√

(xi − cyi )T (xi − cyi ). κ is propor-
tional to ρ. For the advanced center loss ACL or ACL-γ , cyi
could also be replaced γyiwyi or γwyi , respectively. With
different ρs, generalized centers have different properties.

– When ρ = 0, the generalized center c′yi degrades to
vanilla center cyi . Center in Eqs. 2 and 6 be considered
as a special case of the generalized center.

– When 0 < ρ < di , the generalized center c′yi is given
by cyi − ρ · xi−cyi‖xi−cyi ‖2 . Intuitively, c

′
yi locates at the edge

of the center region (a hypersphere centered at cyi with
radius ρ), and has the minimal distance to xi .
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Fig. 5 The distributions of deeply learned features of CL, ACL, and
ACL-γ with different radius ρ. Different ρ lead to different deep feature
distributions. Best viewed in color (Color figure online)

– When di ≤ ρ, the generalized center c′yi locates on the
point xi . For this case, we do not penalize the distance
between xi and cyi .

We perform experiments of the generalized center with
different ρs on MNIST, shown in Fig. 5. It is known that
MNIST is a less challenging dataset, where only a small por-
tion of the data are considered as hard samples. It may not be
easy for us to clearly observe how the hard samples distribute
in Fig. 5. To make it clearer and more intuitive, we present
the distributions of the intra-class distances of two models
(ρ = 0 and ρ = 5) in Fig. 6. The long tail on the right shows
the hard samples with large intra-class distances. Compared
with the vanilla center loss (red), generalized center (blue)
greatly depresses the tail part, indicating that hard samples
are better handled. Also, the mean of the intra-class distances
increases with larger ρ. It indicates that more intra-class vari-
ations are preserved.

Note that we are making an isotropic Gaussian assump-
tion here for the learned features, i.e. learning generalized

Fig. 6 The distributions of intra-class distances with different ρs on
MNIST dataset

centers as the means and identity matrix as the covariance.
Mahalanobis distance could be an alternative in order to cap-
ture the correlations of different dimensions in the learned
features. In practice, however, we may not have sufficient
data to estimate an accurate covariance matrix for each class.
So the assumption we made achieves a good trade-off. It not
only simplifies the optimization, but also reduces the risk of
overfitting.

An alternative interpretation for generalized center By
substituting Eqs. 9 into 5, ρ can be extracted outside the sum-
mation, as shown in the following:

LC = 1

2m

m∑

i=1

‖xi − c′yi ‖22

= 1

2m

m∑

i=1

‖xi − cyi + κ(xi − cyi )‖22

= (1 − κ)2

2m

m∑

i=1

‖xi − cyi ‖22

=
(
1 − min

(
ρ
di

, 1
))2

2m

m∑

i=1

‖xi − cyi ‖22

(10)

Since κ depends on the deep feature xi and its center cyi ,

the term of
(1−min( ρ

di
,1))2

2 can be interpreted as an adaptive
multiplier depending on the position of xi , rather than a fixed
one. By introducing κ , we are able to adaptively relax the
objective of center loss.

3.5 Discussions

– Compared to contrastive loss and triplet loss Contrastive
loss (Sun et al. 2014a; Wen et al. 2016a) and triplet loss
(Schroff et al. 2015) are proposed to enhance the dis-
criminative power of the deeply learned face features.
However, they both suffer from dramatic data expan-
sion when constituting effective sample pairs or sample
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Table 2 Comparisons between center loss and coco loss

W/o center loss term W/ a center loss term

w/o L2 normalization on x and w Softmax loss

− 1
m

∑m
i=1 log

e
wT
yi

xi+byi

∑n
j=1 e

wT
j xi+b j

Softmax loss + advanced center loss

− 1
m

∑m
i=1 log

e
wT
yi

xi+byi

∑n
j=1 e

wT
j xi+b j

+ λ
2m ‖xi − γyiwyi ‖22

w/ L2 normalization on x and w,
where w̃ = w

‖w‖2 ,x̃ = x
‖x‖2

coco loss

− 1
m

∑m
i=1 log

e
w̃T
yi

x̃i+byi

∑n
j=1 e

w̃T
j x̃i+b j

coco loss + advanced center loss

− 1
m

∑m
i=1 log

e
w̃T
yi

x̃i+byi

∑n
j=1 e

w̃T
j x̃i+b j

+ λ
2m ‖x̃i − γyi w̃yi ‖22

triplets from the training set. On the contrary, the cen-
ter loss enjoys the same requirement as the softmax loss
and does not need complex recombination of the train-
ing samples. Consequently, the supervised learning of
our CNNs is more efficient and easier to implement.
Moreover, our loss function targets more directly on the
learning objective of the intra-class compactness, which
is beneficial to the discriminative feature learning.

– Compared to the softmax loss family Recently, (Wang
et al. 2017; Ranjan et al. 2017; Liu et al. 2017a) refor-
mulate the softmax loss as metric learning approaches
for face recognition. In order to learn discriminative
features on hypersphere, they explicitly model and opti-
mize the angular distances between the samples. They
achieve impressive performance on public benchmarks
with simple modifications. Different from the aforemen-
tioned works, we take an alternative view by introducing
anEuclidean distance based loss for deepmetric learning.
These two branches of approaches are complementary to
each other and can be used at the same time.

– Compared to coco loss The formulations of coco loss
(Liu et al. 2017b) and our approach are compared inTable
2. It can be observed that our approach is not euivalent
to coco loss even if weight wyi and feature xi are nor-
malized with L2 length. In fact, they focus on different
perspectives in learning discriminative features. Specifi-
cally, our approach explicitly formulates and minimizes
the intra-class distance as an additional term, while coco
loss integrates their merits into softmax loss itself. As an
additional term, center loss is the key for our approach to
yield discriminative features.

4 Experiments

Extensive experiments are conducted on several public
domain face datasets to verify the effectiveness of the
proposed approach. Section 4.1 describes the necessary
experimental details. Section 4.2 provides a comprehensive
ablation study for center loss. Section 4.3 investigates a num-
ber of prevalent loss functions for face recognition. Finally,
we compare our face recognition approach to the state of the
arts.

Table 3 The numbers of overlap identities in training and testing
datasets we used

LFW YTF IJB-A MegaFace

CASIA 17 7 22 42

VGGFace2 594 245 31 18

4.1 Experimental Details

Training dataVGGFace2 (Cao et al. 2017) is aweb-collected
face images dataset with manually identity labelling. It con-
sists of two splits: vggface2_train and vggface2_
test. For vggface2_train, we remove 271,554 images
(of 637 identities) with failed face detections or labeled iden-
tities appearing in the testing datasets. Finally, 2,870,336
images from 7994 identities are remained as our training
data. The face images are horizontally flipped for data aug-
mentation.

We also use CASIA-WebFace (Yi et al. 2014) as
another training set, in order to explore the performance
of the proposed approach with small-scale training set.
CASIA-WebFace includes 494,414 images from 10,752
identities, where 59 identities appearing in testing set are
manually removed. The testing set includes LFW, YTF, IJB-
A, and MegaFace Challenge 1. The overlapping identities
between training and testing datasets are given in Table 3.

PreprocessingAll the faces in images and their landmarks
are detected by MTCNN (Zhang et al. 2016). We use 5 land-
marks (two eyes, nose and two mouth corners) for similarity
transformation. When the detection fails, we simply discard
the image if it is in training set, but use the provided land-
marks if it is a testing image.The faces are cropped to 112×96
RGB images. Following a previous convention (Sun et al.
2014b), each pixel (in [0, 255]) in RGB images is normal-
ized by subtracting 127.5 then dividing by 128.

CNN configurations We implement the CNNs using the
Caffe (Jia et al. 2014) library with our modifications. The
details of CNN configurations are given in Table 4. The
20-layer net is the backbone network. We also explore archi-
tectures with different number of layers, such as 4-layer net,
10-layer net, 36-layer net, or 64-layer which are constructed
by adding (or removing) a few residual blocks to (or from) the
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backbone network. These models are trained with batch size
of 128 on four GPUs. The learning rate is started from 0.1,
and divided by 10 at the 25 K, 38 K iterations. A complete
training is finished at 45 K iterations.

Testing details The deep features are extracted from the
output of the FC1 layer. We extract the features for each
image and its horizontally flipped one, and concatenate them
as the final identity representation. The score is computed
by the cosine similarity of two identity representations. We
follow the protocols of the evaluation benchmarks and report
the performance accordingly.

4.2 Ablation Studies

Evaluation dataset and protocols In this section, we use
LFW(Huang et al. 2007;Huang andLearned-Miller 2014) as
the evaluation dataset. It contains 13,233 web-collected face
images from 5749 identities with large variations in pose,
expression and illuminations. We evaluate our approaches
based on two protocols. The first one is the standard pro-
tocol of unrestricted with labeled outside data (Huang and
Learned-Miller 2014), where we evaluate 6000 pairs of face
images (3000 positive pairs and 3000 negative pairs). 6000
pairs are divided into 10 splits. We compute the accura-
cies on them and report the average. The second one is
the protocol of benchmark of large-scale unconstrained face
recognition (BLUFR),wherewe evaluate 47,117,778pairs of
face images (156,915 positive pairs and 46,960,863 negative
pairs). The verification rates (VR) at false accept rate (FAR)
of 0.1% and the open-set detection and identification rates
(DIR) at rank-1 and FAR=1% are reported. More details are
described in Liao et al. (2014).

Wefirst present a number of ablation studies to analyze the
behavior of CL, ACL and ACL-γ with varying loss weights
λ. Here we fix the training set and CNN architecture to
vggface2_train and 20-layer net, respectively. Second,
we conduct exploratory experiments for radius ρ with fixed
loss weights. In the following, we fix the hyperparameters λ

and ρ, and perform experiments with various network archi-
tectures (see Table 4) and training sets (vggface2_train
and CASIA-WebFace). From the experimental results, we
have the following observations.

Parameter sharing The results in Fig. 7 show that the
parameter sharing strategy not only reduces the model size,
but also significantly improves the performance. Specifi-
cally, the best accuracies on 6000 pairs are 99.30%, 99.53%,
and 99.57% for CL, ACL, and ACL-γ , respectively. Sim-
ilarly, the best VRs and DIRs on BLUFR are (96.64% vs.
98.52% vs. 98.4%) and (73.07% vs. 82.84% vs. 83.61%).
The performance improvements support our hypothesis that
the parameters in softmax loss and center loss are redundant
and reusable. Moreover, the advanced center loss is less sen-
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CL
ACL
ACL-

(a) LFW accuracy on 
6000 pairs

(b) LFW verification rate under 
BLUFR protocol

(c) LFW identification rate 
under BLUFR protocol

Fig. 7 Experimental results of varying loss weight λ

Table 5 Experimental results
on LFW with varying radius ρ

Radius ρ 6000 pairs Acc. (%) BLUFR Average dist. (d̄) Normalized range

VR (%) DIR (%)

0 99.30 96.25 64.74 12.05 [0.35, 3.31]

5 99.13 97.03 71.83 13.82 [0.36, 3.07]

10 99.33 97.33 73.42 16.18 [0.39, 2.95]

15 99.35 97.49 75.83 18.84 [0.44, 2.68]

20 99.35 97.79 77.15 22.09 [0.45, 2.48]

25 99.35 97.75 79.32 25.39 [0.46, 2.32]

Bold values indicate the best results

sitive to various loss weights, since its performance remains
stable across a wide range of λ.

Loss weight λ A proper loss weight is important for bal-
ancing two loss functions in joint supervision. As can be
seen in Fig. 7, simply using either the softmax loss or center
loss is not a good choice. Comparing the models of λ = 0
and λ = 0.01, the accuracy, VR, and DIR are improved
from (98.38%, 89.61%, and 63.88%) to (99.3%, 96.25%,
and 64.74%). This is because deeply learned features remain
considerable intra-class variations when only softmax loss is
adopted. As λ increases, we are able to achieve an appropri-
ate trade-off on intra-class and inter-class distances. Based
on the experimental results, we fix the loss weight to 0.01
unless otherwise stated.

Radius ρ We present the experimental results of CL with
different ρ in Table 5. Comparing the models of ρ = 0 and
ρ = 20, the performances are boosted from (99.3%, 96.25%,
and 64.74%) to (99.35%, 97.75%, and 79.32%),with (0.05%,
1.54%, and 12.43%) improvements. The protocol of 6000
pairs is considered to be saturated owing to its small size. On
the more challenging protocol of BLUFR, the improvements
are more significant. This experiment verifies that the region-
based center could be a kind of effective generalized center,
which is beneficial to the performance.

To better understand the generalized center, the average
distances d̄s between features and their centers with different
ρs are reported in Table 5. Also, we present the normal-
ized ranges of intra-class distance di , which are given by
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Fig. 8 The distributions of the intra-class distances with different ρs
on LFW dataset

[min(di )
d̄

,
max(di )

d̄
]. From Table 5 we observe that d̄ increases

with larger ρ. It is consistent with the learning objective
of generalized center, where more intra-class variations are
preserved. On the other hand, the normalized ranges of intra-
class distances are smaller with larger ρ. It indicates that the
hard samples (with large intra-class distances) are effectively
optimized, leading to better performance. The distributions
of intra-class distances shown in Fig. 8 provide intuitive illus-
trations and further verify our observations.

Training set As observed from Table 6, all the results
using larger-scale training set (vggface2_train, 3 M)
are better than their counterparts using small-scale dataset
(CASIA-WebFace, 0.5M).This indicates that our approac-
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Table 6 LFW Results obtained by different training sets

Method Training set (M) 6000 pairs BLUFR

Acc. (%) VR (%) DIR (%)

CL 0.5 98.58 93.24 61.71

CL 3 99.30 96.25 64.74

ACL 0.5 98.93 94.69 72.33

ACL 3 99.48 98.34 81.99

ACL-γ 0.5 98.90 94.86 72.32

ACL-γ 3 99.43 98.39 83.61

Bold values indicate the best results

hes are scalable and far from saturated on the scale of current
training set. We believe our performance can be further
improved by more and more training data.

Depth of CNNs The joint supervision of softmax loss and
center loss defines a challenging but useful learning objective
for face recognition. Itmakes full use of the learning ability of
deep CNNs to boost the performance. Comparing the results
of 4-layer and 64-layer nets in Fig. 9, the best performance of
ACL-γ are improved from (98.63%, 94.67%, and 69.81%)

to (99.6%, 98.89%, and 85.28%). However, the results of CL
are not consistently improving. We argue that this is because
of overfitting, caused by the increasing convolutional layers.
With the parameter sharing strategy, our ACL and ACL-γ
models can easily enjoy performance gains from increased
depth, avoiding overfitting to a great extent.

4.3 Experiments on Different Loss Functions

We compare our approaches with other state-of-the-art loss
functions, including softmax loss, contrastive loss (Sun et al.
2014a), NormFace (Wang et al. 2017), coco loss (Liu et al.
2017b), and SphereFace (Liu et al. 2017a). We implement
these methods using the open-source codes they released.
Moreover, we also design the experiments on the combina-
tions of state-of-the-art loss functions and center loss to see
whether they are complementary. For fair comparison, all
the experimental settings in training and testing are the same
except the loss functions. The training set and network archi-
tecture are fixed to vggface2_train and 20-layer net.

We have two major observations from the results in
Table 7. First, CL,ACLandACL-γ substantially improve the

CL
ACL
ACL-

CL
ACL
ACL-

(a) LFW accuracy on 
6000 pairs

(b) LFW verification rate under 
BLUFR protocol

(c) LFW identification rate 
under BLUFR protocol

Fig. 9 Experimental results of varying the number of layers in CNNs

Table 7 Performance of different loss functions on LFW and IJB-A

Loss function LFW IJB-A

6000 pairs BLUFR TAR (%) at FAR’s of

Acc. (%) VR (%) DIR (%) 0.001 0.01 0.1

Softmax loss 98.38 89.61 63.88 78.01 88.79 95.40

Softmax loss + contrastive loss (Sun et al. 2014a) 99.08 95.93 68.45 78.95 89.81 96.22

NormFace (Wang et al. 2017) 97.02 83.73 48.82 68.24 83.82 93.62

coco loss (Liu et al. 2017b) 99.10 95.70 72.58 84.77 92.43 97.01

SphereFace(Liu et al. 2017a) 99.42 99.18 91.34 91.78 95.87 98.22

Softmax loss + CL 99.35 97.75 79.32 79.02 91.41 97.68

Softmax loss + ACL 99.48 98.34 81.99 87.12 94.07 98.12

Softmax loss + ACL-γ 99.43 98.39 83.61 87.61 94.33 98.14

coco loss + ACL-γ 99.48 97.96 76.22 84.24 93.45 97.55

SphereFace + ACL-γ 99.45 99.27 91.45 91.87 95.93 98.09

Bold values indicate the best results
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Table 8 Comparisons with the
state-of-the-art methods on
LFW and YTF

Method Model Input size Training set LFW (%) YTF (%)

DeepFace (Taigman et al. 2014) 3 152 × 152 4M* 97.35 91.4

DeepID2+ (Sun et al. 2015) 25 47 × 55 300K* 99.47 93.2

FaceNet (Schroff et al. 2015) 1 224 × 224 200M* 99.65 95.1

Deep Embedding (Liu et al. 2015) 1 – 1.3M* 99.13 –

coco loss (Liu et al. 2017b) 1 235 × 235 3M* 99.86 –

ReST (Wu et al. 2017) 1 112 × 112 0.5M 99.03 95.4

NormFace (Wang et al. 2017) 1 112 × 96 0.5M 99.19 94.7

SphereFace (Liu et al. 2017a) 1 112 × 96 0.5M 99.42 95.0

VDNet (Sohn et al. 2017) 1 100 × 100 1M – 91.4

DAN (Rao et al. 2017) 1 112 × 96 1M – 94.3

NAN (Yang et al. 2016) 1 224 × 224 3M – 95.7

Softmax loss 1 112 × 96 3M 98.55 94.7

Softmax loss + CL 1 112 × 96 3M 99.30 95.2

Softmax loss + ACL-γ 1 112 × 96 3M 99.57 96.1

Softmax loss + CL (ρ = 5) 1 112 × 96 3M 99.33 95.4

Softmax loss + ACL-γ (ρ = 5) 1 112 × 96 3M 99.60 96.2

SphereFace + ACL-γ (ρ = 5) 1 112 × 96 3M 99.60 96.6

Bold values indicate the best results
*Indicates the private training dataset

softmax loss, with more than 15%, 18%, 19% and accuracy
gains on DIR, respectively. They also clearly outperform the
performance of softmax loss + contrastive loss (Sun et al.
2014a), NormFace (Wang et al. 2017), and coco loss (Liu
et al. 2017b). However, they are marginally inferior than
SphereFace. Second, we conduct experiments to combine
ACL-γ with coco loss and SphereFace. The resulting mod-
els perform better than the single coco loss or the single
SphereFace. Specifically, SphereFace + ACL-γ achieves the
best result on BLUFR with 99.27% and 91.45%. Additional
experiments on IJB-A are also presented in Table 7. Simi-
lar observations are shown in the results. Besides, we notice
that ACL-γ can be added to many existing loss functions to
improve their performance, especially on challenging proto-
cols, like BLUFR on LFW and lower FAR on IJB-A. These
facts verify that our approaches are useful, and complemen-
tary with the prevalent loss functions.

4.4 Experiments on LFW andYTF

Evaluation dataset and protocols In this section, we compare
the performance of ourmethods to those of the state of the arts
on LFW and YTF. YTF dataset (Wolf et al. 2011) consists
of 3425 videos of 1595 different identities, with an aver-
age of 2.15 videos per person. The clip durations vary from
48 frames to 6070 frames, with an average length of 181.3
frames. For both LFW and YTF benchmarks, we follow the
unrestricted with labeled outside data protocol (Huang and
Learned-Miller 2014). The verification rates on 6000 image
pairs in LFW and 5000 video pairs are reported.

Following the best practices we investigated, we train sev-
eral 64-layer nets on vggface2_train using different
combinations of our two contributions, and compare them
with the state-of-the-art approaches. The results are summa-
rized in Table 8. we make several observations based on the
results of our models. First, parameter sharing (softmax loss
+ ACL-γ , 99.57% on LFW and 96.1% on YTF) and gener-
alized center (softmax loss + CL(ρ = 5), 99.33% on LFW
and 95.4% on YTF) individually improve the performance
(softmax loss + CL, 99.30% on LFW and 95.2% on YTF).
Second, combining parameter sharing and generalized cen-
ter (softmax loss + ACL(ρ = 5)) can further achieve better
results. The improvements are more significant on challeng-
ing dataset, as validated on IJB-A in Sect. 4.5.

Comparing to the state of the arts, both softmax loss +
ACL-γ (ρ = 5) and SphereFace + ACL-γ (ρ = 5) achieve
the accuracy of 99.6% on LFW, outperforming the other
methods. Noted that the comparisons may not be direct since
different methods use different network architectures and
training datasets. Moreover, it is worth noting that our good
results are achieved by only using the relative small image
size (112× 96, compared to 224× 224 for coco loss), which
greatly reduces the computation andmemory cost.Moreover,
ourmethods achieve96.6%accuracyonYTF. It is higher than
the performance of the video-based recognition approaches
(95.7% for NAN, 94.3% for DAN, and 91.4% for VDNet)
in Table 8. These results show that only using still images in
the training, our models can yield highly discriminative face
representations that is easily generalized to video data.
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Table 9 State-of-the-art results on IJB-A datasets

Method Input size 1:1 Verification (%) 1:N Identification (%)

TAR @ FAR TPIR @ FPIR TPIR @ Rank

0.001 0.01 0.1 0.01 0.1 1 5 10

LSFS (Wang et al. 2015a) 100 × 100 51.4 73.3 89.5 38.3 61.3 82.0 92.9 –

DCNN-fusion (Chen et al. 2016) 100 × 100 – 83.8 96.7 – – 90.3 96.5 97.7

VDNet (Sohn et al. 2017) 100 × 100 64.9 86.4 97.0 – – 89.5 95.7 96.8

DR-GAN (Tran et al. 2017) 100 × 100 53.9 77.4 – – – 85.5 94.7 –

PAMs (Masi et al. 2016) 224 × 224 65.2 82.6 – – – 84.0 92.5 94.6

NAN (Yang et al. 2016) 224 × 224 88.1 94.1 97.8 81.7 91.7 95.8 98.0 98.6

TPE (Sankaranarayanan et al. 2016) 224 × 224 81.3 90.0 96.4 75.3 86.3 93.2 – 97.7

Template Adaptation (Crosswhite et al. 2017) 224 × 224 83.6 93.9 97.9 77.4 88.2 92.8 97.7 98.6

VGGFace2 (Cao et al. 2017) 224 × 224 90.4 95.8 98.5 84.7 93.0 98.1 99.4 99.6

Softmax loss 112 × 96 81.43 90.62 96.41 76.62 89.72 95.92 98.18 98.69

Softmax loss + CL 112 × 96 78.51 92.31 97.92 71.15 92.10 96.71 98.74 99.07

Softmax loss + ACL-γ 112 × 96 89.07 95.59 98.46 84.63 95.16 97.42 98.81 99.09

Softmax loss + CL (ρ = 5) 112 × 96 84.09 94.15 98.30 81.94 94.48 97.01 98.72 99.11

Softmax loss + ACL-γ (ρ = 5) 112 × 96 89.19 95.22 98.46 86.71 95.29 97.30 98.80 99.17

SphereFace + ACL-γ (ρ = 5) 112 × 96 93.67 96.90 98.43 93.57 97.75 97.66 98.63 98.90

Bold values indicate the best results

4.5 Experiments on IJB-A Janus

Evaluation dataset and protocols IJB-A dataset (Klare et al.
2015) consists of 5712 face images and 2085 videos from
500 identities. They are collected from unconstrained envi-
ronment and show large variations on poses. We evaluate the
1:1 face verification and report the verification rates at FAR
of 0.001, 0.01, and 0.1. Again, we follow the best practices
that we already obtained to train the models.

From the results in Table 9, we have several observa-
tions. First, the improvements obtained by parameter sharing
and generalized center are consistent with those on LFW
and YTF. In particular, combing these two (softmax loss
+ ACL-γ (ρ = 5)) achieves 2%–3% improvements on the
most challenging protocol, i.e. TPIR at FPIR of 0.01. Sec-
ond, our SphereFce + ACL-γ model (ρ = 5) achieves
the best verification rates of 93.67% at 0.001 FAR and
96.90% at 0.01 FAR. Again, it indicates that our models
work well in the challenging scenarios. For FAR of 0.1,
our performance (98.43%) is slightly inferior than what
VGGFace2 achieves (98.5%). Besides, for identification
evaluation, we also observe that our SphereFce + ACL-γ
model (ρ = 5) significantly improves the state-of-the-art
results by 8.87% and 4.75% on TPIR at FPIR of 0.01
and 0.1. Moreover, we obtain competitive results using the
relative small input size (112 × 96), while other state-of-
the-art methods generally adopt larger input size (224 ×
224). It demonstrates the superiority of our approaches,
and indicates that there is substantial room for improve-
ment.

Table 10 Comparison of performance on MegaFace Challenge 1

Method Identification
Rate (%)

Verification
Rate (%)

Softmax loss 52.01 60.41

Softmax loss + CL 60.45 76.98

Softmax loss + ACL-γ 64.79 79.81

Softmax loss + CL (ρ = 5) 64.03 78.45

Softmax loss + ACL-γ (ρ = 5) 65.27 80.20

4.6 Experiments onMegaFace Challenging 1

Evaluation dataset and protocols MegaFace Challenge 1
(Miller et al. 2015) is released as a testing benchmark. It
aims to evaluate the performance of face recognition algo-
rithms at the million scale of distractors (people who are
not in the testing set). MegaFace datasets include gallery
set and probe set. The gallery set consists of more than 1
million images from 690 K different individuals. The probe
set for general face recognition is Facescrub (Ng and Win-
kler 2014). Facescrub dataset is a publicly available dataset,
containing 100 K photos of 530 unique individuals (55,742
images of males and 52,076 images of females). Here we
evaluate our model under the protocol of large-scale training
set and report two results: (1) rank-1 identification rate with
1 M distractors, (2) verification rate at FAR = 10−6 with
1 M distractors.

The results are summarized in Table 10 which shows
unsurprising consistency with those on LFW, YTF, and IJB-
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A datasets. Compared to the original center loss, parameter
sharing and generalized center individually achieves 3%–4%
and 2%–3% improvements on identification and verifica-
tion, respectively.Combing these twoproposed strategies can
improve the performance further. These results demonstrate
that the proposed approaches are useful and complementary
with each other.

5 Conclusions

In this paper, we have proposed a new loss function, referred
to as center loss for training deep face recognition networks.
By combining center loss with traditional losses like soft-
max loss, the discriminative power of the deeply learned
features can be highly enhanced for robust face recogni-
tion. In addition,we introduce parameter sharing strategy and
generalized center to extend and strengthen center loss. We
conduct extensive experiments to examine the performance
of our loss on several large-scale face benchmarks. Empir-
ical results convincingly demonstrated the effectiveness of
the proposed approach.
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